Stablecoins: Adoption and Fragility

Christoph Bertsch, Sveriges Riksbank¹

CB&DC Virtual Seminar Series

19 May 2023

¹The views expressed in this presentation are solely the responsibility of the author and should not be interpreted as reflecting the views of the Riksbank. $\equiv -22$

Motivation

Stablecoins are getting a lot of attention after the Facebook Libra wake-up call and amid the rapid development of crypto markets

What are the reasons behind the fragility of stablecoins and what factors contribute to their fragility?

- Can stablecoin adoption be excessive?
- How should stablecoins be regulated?

Objective: Develop a theoretical model of stablecoins that allows to analyze the determinants of adoption and fragility

- Contrast the beneficial role of stablecoins with the risk of stablecoin runs and downsides from wider adoption
- Shed light on prominent features of the stablecoins market
- ► Gain insights for the risk assessment and regulation

Summary - Model in a Nutshell and Place in the Literature

Two period model

- ► Interim date: stablecoin conversion game
 - Global game of regime change (Carlsson and van Damme 1993)
- **Ex-ante date:** stablecoin adoption game
 - **Premise:** stablecoins offer a *benefit* for certain use cases and the potential holders are *heterogeneous* in how much they benefit from different means of payment (Agur et al. 2022)
 - Consumers trade off the benefits of stablecoins with the return differential relative to deposits and the risk of devaluation

Summary - Model in a Nutshell and Place in the Literature

Two period model

- ► Interim date: stablecoin conversion game
 - Global game of regime change (Carlsson and van Damme 1993)
- ► Ex-ante date: stablecoin adoption game
 - **Premise:** stablecoins offer a *benefit* for certain use cases and the potential holders are *heterogeneous* in how much they benefit from different means of payment (Agur et al. 2022)
 - Consumers trade off the benefits of stablecoins with the return differential relative to deposits and the risk of devaluation

Relation to the literature

▶ Literature

- ► Diamond-Dybvig: adoption game endogenizes the liability side
- ► Focus on payment aspect and study determinants of adoption and fragility with a view on risk assessment and regulation

nan

Summary - Main Results

Identify two mechanisms that can justify the regulatory community's concern about excessive stablecoin adoption

- 1. Uninternalized destabilizing composition effect
- 2. Uninternalized network effects, which can undermine the role of bank deposits as a means of payment
- ► Fragility
 - Factors that promote stablecoin adoption also tend to make the marginal coin holder less flighty \rightarrow less runs
 - Factors that increase the issuer's revenue from fees and seigniorage promote stability, as do congestion effects
- Support for a regulatory disclosure regime and rules on reserves and the capitalization of issuers

The Model

▲ロト ▲御ト ▲ヨト ▲ヨト ヨー のへで

• Three dates (t = 0, 1, 2) and a unit continuum of risk-neutral consumers $i \in [0, 1]$, endowed with \$1, who consume at t = 2

Sac

- ► Three dates (t = 0, 1, 2) and a unit continuum of risk-neutral consumers i ∈ [0, 1], endowed with \$1, who consume at t = 2
- A homogeneous and divisible consumption good produced at t = 2 by competitive sellers with a unit cost of \$1

- ▶ Three dates (t = 0, 1, 2) and a unit continuum of risk-neutral consumers $i \in [0, 1]$, endowed with \$1, who consume at t = 2
- A homogeneous and divisible consumption good produced at t = 2 by competitive sellers with a unit cost of \$1
- Two monies: insured bank deposits and stablecoins
 - Consumers can transfer their t = 0 dollar endowments to date t = 2 by holding insured bank deposits or stablecoins
 - At t = 2 sellers accept deposits or coins of equal value

- ▶ Three dates (t = 0, 1, 2) and a unit continuum of risk-neutral consumers $i \in [0, 1]$, endowed with \$1, who consume at t = 2
- A homogeneous and divisible consumption good produced at t = 2 by competitive sellers with a unit cost of \$1
- ► Two monies: insured bank deposits and stablecoins
 - Consumers can transfer their *t* = 0 dollar endowments to date *t* = 2 by holding insured bank deposits or stablecoins
 - At t = 2 sellers accept deposits or coins of equal value
- ▶ Deposits are modeled as an "outside option" with an exogenous interest rate r^D ≥ 0 when held from t = 0 to t = 2

- Three dates (t = 0, 1, 2) and a unit continuum of risk-neutral consumers $i \in [0, 1]$, endowed with \$1, who consume at t = 2
- A homogeneous and divisible consumption good produced at t = 2 by competitive sellers with a unit cost of \$1
- Two monies: insured bank deposits and stablecoins
 - Consumers can transfer their t = 0 dollar endowments to date t = 2 by holding insured bank deposits or stablecoins
 - At t = 2 sellers accept deposits or coins of equal value
- Deposits are modeled as an "outside option" with an exogenous interest rate $r^D > 0$ when held from t = 0 to t = 2
- Stablecoins are issued by a monopolistic issuer
 - The issuer offers to convert cash into a digital token and vice versa one-to-one at t = 0, 1, 2; but may not keep her promise
 - Funds collected at t = 0 are invested in a risky technology with a t = 2 return $\theta \sim U[\theta, \overline{\theta}]$, where $0 < \theta < 1 < \overline{\theta}$

Sac

Environment and Agents (Continued)

► Stablecoins demand: payment preference & conversion costs

• Consumers face idiosyncratic risk about their consumption preference at *t* = 2 and sellers have a **payment preference**

ヨトィヨト

Environment and Agents (Continued)

► Stablecoins demand: payment preference & conversion costs

- Consumers face idiosyncratic risk about their consumption preference at t = 2 and sellers have a **payment preference**
- Conversion costs $\tau_0 = 0 < \tau_1, \tau_2$ generate advantage from having the "right money on hand" at t = 2

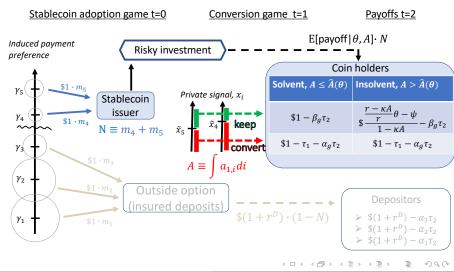
Environment and Agents (Continued)

► Stablecoins demand: payment preference & conversion costs

- Consumers face idiosyncratic risk about their consumption preference at *t* = 2 and sellers have a **payment preference**
- Conversion costs $\tau_0 = 0 < \tau_1, \tau_2$ generate advantage from having the "right money on hand" at t = 2
- G groups indexed by $g \in \{1, ..., G\}$, with $\sum_{g=1}^{G} m_g = 1$

payment type	probability
stablecoins	$\alpha_{g} = \alpha + \gamma_{g}$
bank deposits	$\beta_{g} = \beta - \gamma_{g}$
both	$1 - \alpha_g - \beta_g$

 $\diamond \ \gamma_{g+1} > \gamma_g$: higher group numbers have a higher expected need for stablecoins at t=2


< 日 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 0 0

Timeline

t=0 Adoption game: Stablecoins vs. insured deposits

- Consumers make adoption decisions simultaneously
- t=1 Conversion game: GG of regime change (Rochet and Vives 2004; Sákovics and Steiner 2009)
 - Incomplete information: Active coin holders receive a private signal $x_i = \theta + \epsilon_i$ with $\epsilon_i \sim U[-\sigma\epsilon, +\sigma\epsilon]$ and $\sigma, \epsilon > 0$, and simultaneously decide whether to demand conversion at t = 1
 - Premature divestment yields $r \leq \underline{\theta}$; bankruptcy cost $\psi \geq 0$
 - ► A1: Coin holders are active with prob. $\kappa \in [0, r) \Rightarrow$ no rationing at t = 1 (Chen, Goldstein, and Jiang, 2010) Details

Graphical Illustration and Conversion Game Payoffs

Analysis and Results

◆ロト ◆母ト ◆臣ト ◆臣ト 三臣 - のへで

Continuation EQ at t = 1 and Determinants of Fragility Given Assumption 1, $\sigma \rightarrow 0$ and N > 0, there exists a *unique threshold equilibrium*; the issuer faces a run at t = 1 for all $\theta < \theta^*$:

$$\int_{\frac{(\theta^*-1)r}{\kappa(\theta^*-r)}}^{1} \left(1 - \frac{\frac{r-\kappa A}{r}\theta^* - \psi}{1-\kappa A}\right) dA = [\alpha - \beta + 2\overline{\gamma}(N)]\tau_2 + \tau_1,$$

where $\overline{\gamma}(N)$ reflects the weighted average of the payment type

Continuation EQ at t = 1 and Determinants of Fragility Given Assumption 1, $\sigma \rightarrow 0$ and N > 0, there exists a *unique threshold equilibrium*; the issuer faces a run at t = 1 for all $\theta < \theta^*$:

$$\int_{\frac{(\theta^*-1)r}{\kappa(\theta^*-r)}}^{1} \left(1 - \frac{\frac{r-\kappa A}{r}\theta^* - \psi}{1-\kappa A}\right) dA = [\alpha - \beta + 2\overline{\gamma}(N)]\tau_2 + \tau_1$$

where $\overline{\gamma}(N)$ reflects the weighted average of the payment type

Increase in	$ $ <i>Prob</i> { $\theta < \theta^*$ }
Bankruptcy cost, ψ	\uparrow
Fraction of active coin holders, κ	\uparrow
Liquidation value, r	\downarrow
Conversion cost, $ au_1$	\downarrow
Average relative preference	
for stablecoin payments, $\overline{\gamma}$	↓ ↓

< ロト < 同ト < ヨト < ヨト -

Continuation EQ at t = 1 and Determinants of Fragility Given Assumption 1, $\sigma \rightarrow 0$ and N > 0, there exists a *unique threshold equilibrium*; the issuer faces a run at t = 1 for all $\theta < \theta^*$:

$$\int_{\frac{(\theta^*-1)r}{\kappa(\theta^*-r)}}^{1} \left(1 - \frac{\frac{r-\kappa A}{r}\theta^* - \psi}{1-\kappa A}\right) dA = [\alpha - \beta + 2\overline{\gamma}(N)]\tau_2 + \tau_1$$

where $\overline{\gamma}(N)$ reflects the weighted average of the payment type

Increase in	$ Prob\{\theta < \theta^*\}$
Bankruptcy cost, ψ	\uparrow
Fraction of active coin holders, κ	\uparrow
Liquidation value, r	\downarrow
Conversion cost, $ au_1$	\downarrow
Average relative preference	
for stablecoin payments, $\overline{\gamma}$	↓ ↓

 $\Rightarrow Destabilizing composition effect: \\ \frac{d\theta^*}{dN} > 0 \text{ iff } d[\alpha - \beta + 2\overline{\gamma}(N)] / dN < 0 \quad (Prop_{\oplus} 2 + 3_{\pm} \text{ Cor}_{\pm} 1) \\ = 0 \text{ or } \beta + 2\overline{\gamma}(N) = 0 \text{ or }$

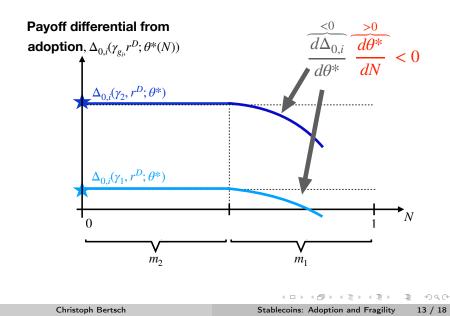
Stablecoin Adoption at t = 0

The group-specific benefit from stablecoin adoption is given by:

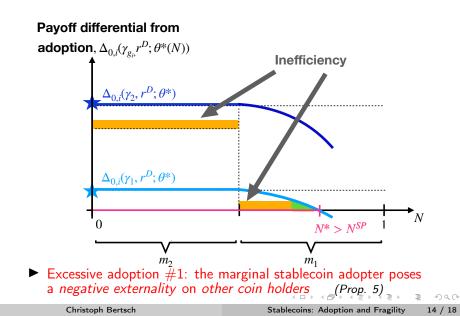
$$= \int_{\underline{\theta}}^{\theta^*} \left(\kappa (1 - \tau_1 - \alpha_{g_i} \tau_2) + (1 - \kappa) \left(\frac{r - \kappa}{r} \theta - \psi}{1 - \kappa} - \beta_{g_i} \tau_2 \right) \right) \frac{d\theta}{\overline{\theta} - \underline{\theta}}$$

+ $\int_{\theta^*}^{\overline{\theta}} (1 - \beta_{g_i} \tau_2) \frac{d\theta}{\overline{\theta} - \underline{\theta}} - (1 + r^D - \alpha_{g_i} \tau_2)$

 \Rightarrow Fragility & adoption: A belief about a higher probability of runs is associated with lower adoption: $dN/d\theta^* \leq 0$ (Lem. 1)


Equilibrium: Suppose coin holders follow *threshold strategies* in the conversion game. Given Assumption 1 and $\sigma \rightarrow 0$, there exists a *unique equilibrium* of the adoption game. (*Prop. 4*)

Regulators are concerned about widespread stablecoin adoption; through the lens of the model there are two relevant externalities:


- 1. Uninternalized destabilizing composition effect: A wider adoption for other stablecoin use cases can be destablizing if the new adopters are more flighty (Tether scenario)
- 2. Uninternalized erosion of bank deposits: With positive network effects a wider adoption can undercut the value of bank deposits for payments (Facebook Libra scenario)

・ロト ・ 同ト ・ ヨト ・ ヨト

Uninternalized Destabilizing Composition Effect: G = 2

Uninternalized Destabilizing Composition Effect: G = 2

Positive Network Effects

Robustness

Introducing positive network effects can overturn the destabilizing composition effect: α'(N) > 0 or β'(1−N) > 0

$$\Rightarrow \frac{d(\alpha(N) - \beta(1 - N) + 2\overline{\gamma}(N))}{dN} > 0 \iff d\theta^* / dN < 0 \text{ is possible}$$

- Caveats:
 - With positive network effects multiple equilibria of the adoption game can co-exist
 - The origin of the positive network effect matters

Positive Network Effects

Robustness

Introducing positive network effects can overturn the destabilizing composition effect: α'(N) > 0 or β'(1−N) > 0

$$\Rightarrow \frac{d(\alpha(N) - \beta(1 - N) + 2\overline{\gamma}(N))}{dN} > 0 \iff d\theta^*/dN < 0 \text{ is possible}$$

- Caveats:
 - With positive network effects multiple equilibria of the adoption game can co-exist
 - The origin of the positive network effect matters

Externality #2: Uninternalized erosion of bank deposits

- ► Suppose a wider adoption of stablecoins reduces the probability that deposits are accepted, i.e. $\alpha'(N) > 0$, $\beta'(1 N) = 0$
- Excessive adoption #2: the marginal stablecoin adopter poses a negative externality on depositors (Prop. 6)

~ ~ ~

Extensions

▲ロト ▲御ト ▲ヨト ▲ヨト ヨー のへで

List of Extensions

- Moral hazard problem of the issuer and disclosure
- Stablecoin lending
- Congestion effects: endogenous conversion cost at t = 1
- Resilience of the issuer: fixed costs of operation and transaction fee income, monetary policy
- E-money providers, narrow banks and hybrid CBDC

< ロト < 同ト < ヨト < ヨト -

Discussion of Extensions

- Moral hazard: Low-risk vs. high-risk portfolio choice (mean-preserving spread in the distribution of θs & r ↓)
 - Socially optimal: Low-risk portfolio choice
 - **Transparency:** A regulatory disclosure regime *can* help to implement the efficient risk choice
 - Caveat: Whether the issuer implements the low-risk portfolio choice under transparency depends on the sensitivity of θ^{*}, N^{*} → Implications for skin in the game / regulation of reserves

200

《曰》《聞》《臣》《臣》

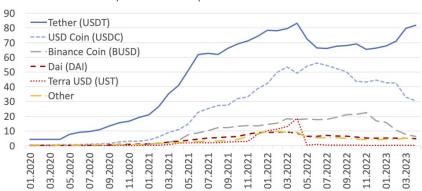
Discussion of Extensions

- Moral hazard: Low-risk vs. high-risk portfolio choice (mean-preserving spread in the distribution of θs & r ↓)
 - Socially optimal: Low-risk portfolio choice
 - **Transparency:** A regulatory disclosure regime *can* help to implement the efficient risk choice
 - Caveat: Whether the issuer implements the low-risk portfolio choice under transparency depends on the sensitivity of θ^{*}, N^{*} → Implications for skin in the game / regulation of reserves
- Stablecoin lending: Consider a stablecoin lending stage <u>in-between</u> the adoption (t = 0) and conversion (t = 1) game
 - Large borrower; may be a speculator (Corsetti, Dasgupta, Morris, and Shin, 2004)
 - **Result:** Stablecoin lending tends to promote stability and adoption if the benefits are not eroded by speculation
 - ◊ Compelling rationale why stablecoin lending can drive demand: Gorton, Klee, Ross, Ross, and Vardoulakis (2022)
 - ♦ Lending is risky: d'Avernas, Maurin, and Vandeweyer (2022)

Sac

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?


Conclusion

- Modification of existing theories of bank runs and currency attacks by modeling stablecoin adoption and incorporating features of the stablecoins market
- Key ingredient: demand for stablecoins is created by heterogeneity in induced payment preferences
- Results
 - 1. Downsides from wider adoption; two relevant externalitites
 - 2. Insights for the risk assessment of stablecoins from the study of the determinants of adoption and fragility
 - 3. Support for a regulatory disclosure regime and rules on reserves and the capitalization of issuers
 - 4. A set of new testable implications

Appendix

▲ロト ▲御ト ▲ヨト ▲ヨト ヨー のへで

The Stablecoins Market

Market Capitalization of Top Stablecoins in Billion US Dollars

Figure: Market capitalization of top stablecoins over the period from end of Jan. 2020 to end of April 2023. Data: coingecko.com.

▶ Back

Christoph Bertsch

Related Literature

- Global games bank run and currency attack models (Morris and Shin 1998; Rochet and Vives 2004; Goldstein and Pauzner 2005) with heterogeneous payoffs (Corsetti, Dasgupta, Morris, and Shin 2004; Sákovics and Steiner 2012)
- Adoption of different means of payment and of crypto assets (Agur, Ari, and Dell'Ariccia 2022; Cong, Li, and Wang 2021) and the role of digital platforms (Chiu, Davoodalhosseini, Jiang, and Zhu 2022)
- Stablecoins
 - Global games: Gorton, Klee, Ross, Ross, and Vardoulakis (2022) on stablecoin lending and the peg; Routledge and Zetlin-Jones (2021) on dynamic devaluations to eliminate speculative attacks; Bolt, Frost, Shin, and Wierts (2023) on the service value of fiat money and vulnerability
 - Others: Klages-Mundt and Minca (2022); Li and Mayer
 (2022); d'Avernas, Maurin, and Vandeweyer (2022)
 Pac

Sar

What are the Key Risks for Coin Holders?

It may not always be possible to redeem the coins at par **Pack**

- Asset return, liquidity and custodial risk
- Operational risk and technological risk (e.g. cyber risk)

Assets			Value in bn USD
Commercial Paper & Certificates of Deposit			8,402
	A-1+ rating	1,434	
	A-1 rating	5,465	
	A-2 rating	1.499	
Cash & Bank Deposits			5,418
Reverse Repurchase Agreements			2,992
Money Market Funds			6,810
Treasury Bills			28,856
Non-U.S. Treasury Bills			397
Secured Loans			2,992
Corporate Bonds, Funds & Precious Metals			3,487
Other Investments (including digital tokens)			5,551
Total			66,410

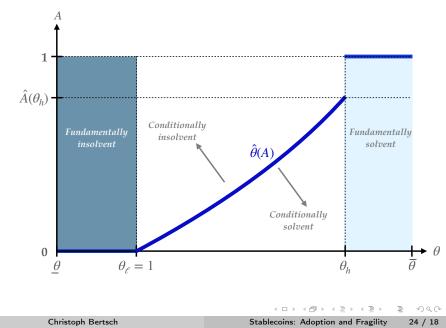
Table: UST asset breakdown 30 June 2022. Assurance opinion by *BDO*, Italy.

Christoph Bertsch	Stablecoins: Adoption and Fragility	21 / 18

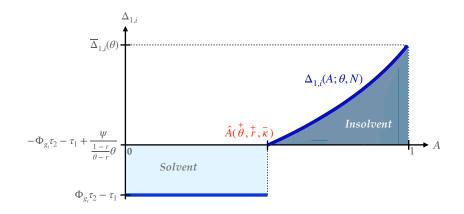
Timeline

Date 0	Date 1	Date 2
1. Adoption game: Consumers simultaneously decide whether to convert their bank deposits to stablecoins, $a_{0,i} = 1$, or not, $a_{0,i} = 0$ 2. The stablecoin issuer invests all funds received from consumers who adopt stablecoins	3. The fundamental θ is realized but unobserved and a fraction κ of coin holders become active 4. Stablecoin conversion game: Active stablecoin holders receive the private signal x_i and decide simultaneously whether to demand conversion to deposits, $a_{1,i} = 1$, or not, $a_{1,i} = 0$, while passive coin holders are dormant 5. The stablecoin issuer meets coin holders' conversion requests by divesting assets	6. The outcome of the $t = 1$ stablecoin conversion game and the fundamental realization θ are observed; the preference of each consumer is realized 7. If the issuer's reserves fall short of the face value of claims held by the remaining active and passive coin holders, the issuer is insolvent and the stablecoins are devalued 8. Consumers buy goods from their preferred seller and convert their money (if necessary) 9. Sellers A and C convert the stablecoins earned; all sellers pay production costs with govern- ment-backed deposits (or dollars)

▶ Back


Solvency of the Stablecoin Issuer

- Ass.: $\overline{\theta} > \theta_h \equiv (1 \kappa)r/(r \kappa) > 1 \Rightarrow$ the issuer can meet all redemption requests at t = 1, 2 if $\theta \in [\theta_h, \overline{\theta}]$
- ► Ass.: κ < r ⇒ the issuer can always meet redemption requests by active coin holders at t = 1
- Insolvency: For θ < θ_h the issuer is cash-flow insolvent if she is unable to meet her t = 2 payment obligations:


$$\kappa(1-A)+1-\kappa > \frac{r-\kappa A}{r}\theta$$

< 日 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 0 0

Solvency as a Function of θ and A

Benefit from demanding conversion, given θ and A

Back

Christoph Bertsch

イロト イ理ト イミト イミト 一臣 Stablecoins: Adoption and Fragility 25 / 18

Continuation Equilibrium at t = 1 for a given N

Proposition 2

Given Assumption 1, $\sigma \rightarrow 0$ and a positive level of adoption N > 0, there exists a unique monotone equilibrium of the conversion game where active coin holders demand conversion iff they receive a private signal below their group-specific signal threshold x_g^* , i.e. for $x_i \leq x_g^*$, and where the issuer faces a run at t = 1 for all $\theta < \theta^*$, where $\theta^* \in (1, \theta_h)$ solves:

$$(\beta(N) - \alpha(N))\tau_2 - \tau_1 - 2\tau_2\overline{\gamma} + \int_{\frac{(\theta^* - 1)r}{\kappa(\theta^* - r)}}^1 \left(1 - \frac{\frac{r - \kappa A}{r}\theta^* - \psi}{1 - \kappa A}\right) dA = 0,$$

with $\overline{\gamma} \equiv (\mu_{\varepsilon}m_{\varepsilon}\gamma_{\varepsilon} + \Sigma_{\varepsilon}^G) + \frac{1}{2}m_{\sigma}\gamma_{\sigma}/(\mu_{\varepsilon}m_{\varepsilon} + \Sigma_{\varepsilon}^G) + \frac{1}{2}m_{\sigma}\gamma_{\sigma}).$

Assumption 1

N

$$\text{Let } \underline{\theta} < 1 - \sigma \epsilon, \ \theta_h + \sigma \epsilon < \overline{\theta}, \ \kappa \leq \overline{\kappa} \ \text{and} \ \psi \in (\psi, \underline{\theta}).$$

▶ Back

References I

- Agur, I., A. Ari, and G. Dell'Ariccia (2022). Designing central bank digital currencies. Journal of Monetary Economics 125, 62–79.
- Bolt, W., J. Frost, H. S. Shin, and P. Wierts (2023). The Bank of Amsterdam and the limits of fiat money. DNB Working Paper No 764.
- Carlsson, H. and E. van Damme (1993). Global Games and Equilibrium Selection. Econometrica 61(5), 989–1018.
- Chen, Q., I. Goldstein, and W. Jiang (2010). Payoff complementarities and financial fragility: Evidence from mutual fund outflows. Journal of <u>Financial Economics</u> <u>97</u>(2), 239–262.
- Chiu, J., S. M. Davoodalhosseini, J. Jiang, and Y. Zhu (2022). Bank Market Power and Central Bank Digital Currency: Theory and Quantitative Assessment. Journal of Political Economy (forthcoming).
- Cong, L. W., Y. Li, and N. Wang (2021). Tokenomics: Dynamic Adoption and Valuation. <u>The Review of Financial Studies</u> <u>34</u>, 1105–1155.

References II

- Corsetti, G., A. Dasgupta, S. Morris, and H. S. Shin (2004). Does One Soros Make a Difference? A Theory of Currency Crises with Large and Small Traders. <u>The Review of Economic Studies</u> 71(1), 87–113.
- Diamond, D. W. and P. H. Dybvig (1983). Bank Runs, Deposit Insurance, and Liquidity. Journal of Political Economy 91(3), 401–419.
- d'Avernas, A., V. Maurin, and Q. Vandeweyer (2022). Can Stablecoins be Stable? Mimeo.
- Goldstein, I. and A. Pauzner (2005). Demand-Deposit Contracts and the Probability of Bank Runs. The Journal of Finance, 1293–1327.
- Gorton, G. B., E. C. Klee, C. P. Ross, S. Y. Ross, and A. P. Vardoulakis (2022). Leverage and Stablecoin Pegs. <u>NBER Working Paper 30796</u>.
- Klages-Mundt, A. and A. Minca (2022). While Stability Lasts: A Stochastic Model of Noncustodial Stablecoins. <u>Mathematical Finance</u> 32(4), 943–981.
- Li, Y. and S. Mayer (2022). Money Creation in Decentralized Finance: A Dynamic Model of Stablecoin and Crypto Shadow Banking. Mimeo.

References III

- Morris, S. and H. S. Shin (1998). Unique Equilibrium in a Model of Self-Fulfilling Currency Attacks. <u>The American Economic</u> <u>Review 88(3)</u>.
- Rochet, J.-C. and X. Vives (2004, December). Coordination Failures and the Lender of Last Resort: Was Bagehot Right after All? Journal of the European Economic Association 2(6), 1116–1147.
- Routledge, B. and A. Zetlin-Jones (2021, May). Currency stability using blockchain technology. <u>Journal of Economic Dynamics and Control</u>, 104155.
- Sákovics, J. and J. Steiner (2009). Who Matters in Coordination Problems? Mimeo.
- Sákovics, J. and J. Steiner (2012, December). Who Matters in Coordination Problems? <u>American Economic Review</u> 102(7), 3439–3461.