DISCUSSION OF "THE DEMAND FOR PROGRAMMABLE PAYMENTS" BY KAHN AND VAN OORDT

PRESENTED IN CBDC WEBINAR

Jonathan Payne

Princeton University

28th April, 2023

INTRODUCTION

- \star Interesting paper, which I really enjoyed reading!
- $\star\,$ Studies optimality of "programmable payments" (like escrow accounts) where:
 - $\star\,$ Buyers send funds into a payment system, then
 - $\star\,$ Payment system releases funds to sellers at a later date.
 - $\star\,$ So, payment system effectively introduce costly, limited commitment.
- \star Comment 1: I like that the paper is precise about:
 - $\star\,$ How "programma bility" improves commitment, and
 - $\star\,$ How that commitment entails costs.
- \star Comment 2: I would like to better understand how this relates to standard dynamic contracting models with limited commitment and/or collateral.

Payne

Environment

- $\star\,$ Continuous time economy.
- $\star\,$ Two risk neutral agents each with discount rate $\rho>0$:
 - $\star\,$ Seller can provide service at flow cost $c\geq 0,$ and
 - ★ Buyer values service at flow utility $b(t) \ge 0$, where in many examples:

$$b(t) = \begin{cases} b, & \text{if } t < T_M \\ 0, & \text{otherwise} \end{cases}$$

- $\star\,$ No asymmetric information; no legal system so two-sided non-commitment.
- \star Agents contract to maximize buyer value (i.e. buyers make take-it-or-leave-it offers).
- $\star\,$ Buyers and sellers (implicitly) have outside option of 0 if they leave contract.

Payne

CONTRACTING PROBLEM: TWO-SIDED NO-COMMITMENT

- \star Buyer chooses:
 - * Payment process $D = \{D_t\}_{t \ge 0}$ to seller and stopping time S,
 - \star Which implicitly give continuation value, W_t , to seller for staying in the contract,

to solve:

$$U_0 = \max_{D,S} \mathbb{E} \Big[\int_0^S e^{-\rho s} (\underbrace{b_t dt}_{\text{benefit}} - \underbrace{dD_t}_{\text{payment}}) \Big] \quad s.t. \quad dW_t = \rho W_t + \underbrace{cdt}_{\text{effort cost}} - \underbrace{dD_t}_{\text{payment}}$$

subject to:

- ★ Buyer participation constraint: $U_t \ge 0$, and
- $\star\,$ Seller participation constraint: $W_t \geq 0$
- ★ Two sided no-commitment and/or reputation much studied. [e.g. Thomas and Worrall (1988), Kocherlakota (1996b), Ligon, Thomas, and Worrall (2002), Abreu Pearce Stacchetti (1990)]
 PAYNE DISCUSSION 28TH APRIL 3/1

Authors Introduce Payment Technology

- * Step 1: Buyer can use technology to submit payment i by sending funds D_i at time T_i .
- \star Step 2: Seller observes payment.
- * Step 3: Payment technology releases funds to seller at some date $S_i \ge T_i$ conditional on whether seller has provided the service. Charges fee K.
- \star Interpretation: an escrow account where payment is held until seller provides service.
- * Terminology: Direct payment if $S_i = T_i$. Programmable payment if $S_t > T_i$.

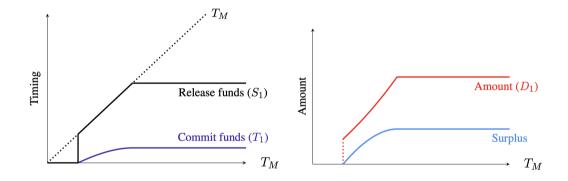
Payment technology introduces costly commitment into the economy.

Contracting Problem: One Payment

 \star Buyer chooses:

- $\star~T_1 =$ time at which they submit payment,
- \star S₁ = time at which payment system releases funds to seller (and contract ends),
- * D_1 = size of payment to seller.

to solve:


$$U_0 = \max_{T_1, S_1, D_1} \mathbb{E} \left[\int_0^{S_1} e^{-\rho s} \underbrace{b_t dt}_{\text{benefit}} - \underbrace{(D_1 + K) e^{-\rho T_1}}_{\text{payment}} \right] \quad s.t.$$

* Buyer PC: must want to submit payment at T_1 : $\int_{T_1}^{S_1} e^{-\rho s} b_t dt - (D_1 + K) e^{-\rho T_1} \ge 0$, and

- * Seller PC: must want to provide service S_1 : $D_1 e^{-\rho S_1} c \int_0^{S_1} e^{-\rho t} \ge 0$
- \star In paper, authors extend to multiple payments.

Payne

Optimal Contract Choice

28th April

My Comments: Contracting Setup

1. Payment technology puts a lot of restrictions on contracting problem:

- $\star\,$ In particular, imposes discrete lump sum payments with fixed cost per payment.
- $\star\,$ I agree this gives a clean problem when there is one payment.
- However, it gets quite complicated when they generalize to multiple payments
 ... without necessarily delivering a lot of additional economic insight.
- 2. Authors could use a more general payment technology for multiple payment case:
 - \star E.g. Allow buyer to commit to a sequence of payments at time 0 but require buyer to maintain balance in payment technology that could deliver value promised to seller.
 - $\star\,$ E.g. Allow the buyer to commit to a sequence of payments at time 0 but impose cost as a function of the continuation promise to the seller.

My Comments: General Setup

1. Perfect information is a very strong assumption:

- $\star\,$ The payment system needs to be able to see whether seller has provided service.
- $\star\,$ Buyer payments also need to be transparent to the seller.
- 2. Information needs complicate interpretation as "automated" escrow system:
 - $\star\,$ Unless payment system run by retail platform, it doesn't have trade information.
 - $\star\,$ This is why escrow accounts are often intermediated by agents who can verify actions.
- 3. Big question is whether programmable payments/smart contracts can pre-commit future income not just escrow payments

- $\star\,$ Interesting paper on optimality of "programmable" payments.
- $\star\,$ I would like to see more discussion of how it relates to other contracting problems with limited commitment.

THANK YOU