
The digital economy, privacy, and CBDC∗

Toni Ahnert† Peter Hoffmann‡ Cyril Monnet§

December 9, 2022

Abstract

We study a model of financial intermediation, payment choice, and pri-

vacy in the digital economy. While digital payments enable merchants

to sell goods online, they also reveal information to banks. By contrast,

cash guarantees anonymity, but limits distribution to less efficient of-

fline venues. In equilibrium, merchants trade off the efficiency gains

from online distribution (with digital payments) and the informational

rents from staying anonymous (with cash). The introduction of cen-

tral bank digital currency (CBDC) raises welfare because it reduces

the privacy concerns associated with online distribution. Payment to-

kens issued by digital platforms crowd out CBDC unless the latter

facilitates data-sharing.
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1 Introduction

The growing dominance of e-commerce has profound implications for the eco-

nomics of payments. Since more and more transactions are conducted online,

physical currency (“cash”) is becoming impractical as means of payment for a

growing share of economic activity. At the same time, new electronic payment

services (e.g. mobile wallets) provide increased speed and convenience to mer-

chants and consumers. Accordingly, the use of cash is declining fast.1 Seizing the

opportunity, large technology firms (“BigTech”) are incorporating payment services

into their digital ecosystems. While particularly salient in China, where WeChat

and AliPay account for more than 90% of digital retail payments, the rest of the

world is catching up rapidly.2

Unlike cash, digital payments generate troves of data, and private enterprises

have incentives to use them for commercial purposes. This gives rise to privacy

concerns because the increased availability of personal information can have im-

portant welfare implications.3 While a proliferation of data promises efficiency

gains, policy makers have become increasingly uneasy about the dominance of

data-centric business models and their anti-competitive potential.4 At the same

time, scandals such as the one surrounding Facebook and Cambridge Analytica

have heightened public sensitivity about data privacy issues in the context of the

digital economy.

Fuelled by this debate, policy makers have advanced the idea of creating

a central bank digital currency (CBDC). One motivation is that public digital

money has a comparative advantage at providing privacy because, unlike private

sector alternatives, it is not bound by profit-maximization incentives.5 Although

ultimately not realized, Facebook’s Libra proposal catapulted the entire debate
1See, for example, Table III.1 in Bank for International Settlements (2021).
2Most large technology firms have expanded into retail payments services, with popular prod-

ucts such as ApplePay or GooglePay growing at the expense of traditional instruments.
3See Acquisti et al. (2016) for a comprehensive overview of the economics of privacy.
4See, e.g., Bergemann et al. (2015), Jones and Tonetti (2020), and Ichihashi (2020).
5Consistent with this view, privacy has been named as number one concern in the Eurosys-

tem’s public consultation on a digital euro (European Central Bank, 2021).

1



into the public limelight in 2019, and efforts towards the introduction of CBDCs

have intensified since then. According to a 2020 survey by the Bank for Interna-

tional Settlements, more than 80% of all responding central banks were actively

researching CBDCs (Boar and Wehrli, 2021).

This paper aims to speak to this debate. It develops a stylized model of

financial intermediation to analyze the interconnections of payments and privacy

in the context of the digital economy. In our model, sellers can distribute their

goods offline (through a brick-and-mortar store) or online. Offline sales can be

settled with both cash and a digital means of payment, but their physical nature

gives rise to an inefficient matching with potential buyers. By contrast, online

distribution enables a more efficient matching with potential buyers, and thus

generates a higher surplus. At the same time, online sales can only be settled with

a digital means of payment.

Sellers are heterogeneous and require outside finance in two rounds of produc-

tion. They privately learn their type (high (H) or low (L)) in the initial round of

production. Only H-sellers can generate a continuation payoff that merits further

financing for a second round of production. Since types are private information,

financiers face an adverse selection problem and will only provide a continuation

loan if they can learn the seller’s type.

We first study a setting in which a bank is the only financier. When sales are

settled digitally in bank deposits, the bank can extract information about sellers

from payment flows. By contrast, cash transactions are anonymous. The bank

therefore must elicit information through contractual arrangements (“screening”),

which leaves informational rents to sellers.

We show that, in equilibrium, sellers opt for online distribution and settle-

ment with bank deposits if the benefits of more efficient matching outweigh the

loss of informational rents associated with privacy. This is the case if the resulting

efficiency gains that sellers can appropriate are large enough. Otherwise, goods

are distributed offline, which is inefficient due to imperfect matching.
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When sellers can use a CBDC—electronic cash—they can trade online with-

out revealing any information to the bank. This enables sellers to capture the best

of both worlds. They can reap some of the efficiency gains of online distribution,

and at the same time earn informational rents from remaining anonymous. From

a social welfare perspective, there are two efficiency gains from the introduction

of CBDC. First, sellers are more likely to trade online when sales are settled with

CBDC, which ensures efficient matching. Second, with CBDC, the bank always

chooses to elicit as much information as possible through contracting. This in-

creases the efficiency of continuation financing.

We then extend the model to include a digital platform, which provides a

settlement token and competes with the bank for continuation loans to sellers.

The platform only observes sellers’ type whenever they use tokens as a means

of payment. Perhaps surprisingly, we show that sellers always prefer settlement

in tokens over CBDC or deposits. Since the bank elicits information through

contracting for the initial loan, the use of tokens ensures that the platform and

the bank can compete for the continuation loan. This raises sellers’ surplus relative

to CBDC or deposits, where the bank is the only informed lender. As a result,

sellers always opt for online distribution, which is the socially optimal outcome.

We also highlight a “dark side” of token use. More specifically, we show

that tokens enable the platform to fend off potential competitors by creating a

“walled garden”. While deposits or CBDC enable sellers to potentially benefit from

switching to a more efficient entrant platform, the resulting lack of competition in

the lending market ensures that all efficiency gains are appropriated by the bank.

Accordingly, sellers are better off with tokens.

Next, we enrich the CBDC with a data-sharing functionality, consistent with

a broader definition of privacy (Acquisti et al., 2016). This enables sellers to reveal

their type costlessly to both the bank and the platform. Importantly, they can do

so after repaying their initial bank loan to avoid ceding any surplus to the bank.

Sellers then enjoy perfect competition in the second round of lending. So they

always opt for online sales through CBDC, which is the socially efficient outcome.
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Finally, we show that a CBDC with a data-sharing feature also enhances

competition among platforms by preventing the incumbent from creating a “walled

garden”. Accordingly, sellers are able to reap the additional efficiency gains asso-

ciated with entrant platforms.

Literature. Our paper is related to the literature on privacy in payments.

In Kahn et al. (2005), cash payments preserve the anonymity of the purchaser,

which provides protection against moral hazard (modelled as the risk of theft).

This is different from the benefit of anonymity in our model, which is reduced

rent extraction in the lending market. Moreover, we also study new trade-offs

associated with the choice of trading venues and their interactions with different

means of payments, including CBDCs and tokens issued by digital platforms.

The paper by Garratt and Van Oordt (2021) is also closely related. They

study a setting in which merchants use information gleaned from current customer

payments to price discriminate future customers. While customers can take costly

actions to preserve their privacy in payments, they fail to appreciate the full social

value of doing so. Therefore, overall investment in privacy falls short of the social

optimum—similar to a public goods problem. In contrast to their focus on an

externality and the social value of privacy, our emphasis is on the private benefit

of preserving privacy.

Our paper builds on work studying the interaction of payments and lending.

Empirical evidence suggests that payment flows are informative about borrower

quality (see, e.g., Mester et al., 2007; Norden and Weber, 2010; Puri et al., 2017).

Parlour et al. (2022) study a model where banks face competition for payment

flows by FinTechs. While this may improve financial inclusion, it affects lending

and payment pricing by threatening the information flow to banks. He et al. (2021)

study competition between banks and Fintech in lending markets with consumer

data sharing. Data sharing enhances competition, but borrowers may still be

worse off since their sign-up decisions reveal information about credit quality.
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Finally, our paper is part of a fast-growing literature on CBDC.6 Brunner-

meier and Payne (2022) develop a model of platform design under competition

with a public marketplace and a potential entrant, and study how different forms

of interoperability are affected by regulation (including CBDC). Their model is

complementary to ours since it studies the nexus of CBDC and the digital econ-

omy, but abstracts from privacy issues altogether. In Garratt and Lee (2021),

privacy features of CBDC are a way to maintain an efficient monopoly in data

collection. Apart from privacy, the preservation of monetary sovereignty and an

avoidance of digital dollarization can motivate the introduction of CBDC (Brun-

nermeier et al., 2019; Benigno et al., 2022). Several recent papers investigate how

CBDC may affect credit supply (Keister and Sanches, 2022; Andolfatto, 2021;

Chiu et al., 2021), bank runs (Fernández-Villaverde et al., 2020, 2021; Ahnert

et al., 2023), the efficacy of government interventions (Keister and Monnet, 2022),

and the monetary system (Niepelt, 2020).

Structure. The remainder of the paper is organized as follows. We intro-

duce the basic model with cash and bank deposits in Section 2, and solve for the

equilibrium in Section 3. We then introduce a CBDC with anonymity in Section

4, and consider competition between the bank and a digital platform in Section

5. Finally, we study data-sharing features of CBDC in Section 6. Section 7 con-

cludes. All proofs are found in Appendix A and additional results are described

in Appendix B.

2 The basic model

There are four dates t = 0, 1, 2, 3 and no discounting. There are three classes of

risk-neutral agents: banks, buyers, and sellers of measure one each. There is a

consumption good and an investment good. Both goods are indivisible.7

Sellers have no resources at t = 0 and need to borrow from a bank to finance
6See Ahnert et al. (2022) for a comprehensive overview of recent work.
7Making goods indivisible greatly simplifies the exposition and the analysis.
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production. They can produce one unit of the consumption good at t = 1 by using

one unit of the investment good at t = 0. A mass q ∈ (0, 1) of sellers are of high

type (H) and produce a good of high quality, while the remaining 1− q sellers are

of low type (L) and produce a good of low quality. Sellers are initially uncertain

about their persistent type and privately learn it at beginning of t = 1. H-sellers

can also produce θ > 1 units of the consumption good at t = 3 using one unit of

the investment good at t = 2. By contrast, L-sellers can produce nothing at t = 3.

Buyers have deep pockets and are heterogeneous in their preferences. A

measure q cares about quality and derives utility uH from consuming one unit of

the high-quality good, and uL from consuming one unit of the low-quality good,

with uL < uH . We call them H-buyers. The remaining measure 1− q of L-buyers

do not care about quality and obtain utility uL independently of quality.8

Banks are endowed with one unit of the investment good at t = 0 and t = 2,

which they can lend to sellers. Their opportunity cost is 1 per unit of investment.

Bankers can neither commit to long-term contracts, nor to not renegotiating loan

terms. Hence, it is as if they could set the interest rates at t = 1 and t = 3. Banks

make take-it-or-leave-it offers, but sellers can abscond with a fraction λ ∈ (0, 1) of

their sales.

Sellers can distribute their goods through two types of venues, a brick-and-

mortar store (“Offline” or OFF) or over the internet (“Online” or ON). Since their

unit production is indivisible, sellers can choose only one trading venue. Offline,

sellers and buyers are matched randomly. This gives rise to four types of meetings

m = (s, b), where s and b denote seller and buyer types, respectively. By contrast,

matching is perfect when sellers distribute their goods online, so that there are

only two types of meetings.9 Sellers make take-it or leave-it offers to buyers, and
8The assumption that the measure of H-sellers equals the measure of H-buyers is merely for

analytical convenience. Assuming different measures would make the analysis more cumbersome,
but not deliver additional insights.

9More specifically, we have the following offline meetings: a measure q2 of (H,H) meetings,
a measure q(1 − q) of (H,L) meetings, a measure (1 − q)q of (L,H) meetings, and a measure
(1− q)2 of (L,L) meetings. There are two online meetings, a measure q of (H,H) meetings and
a measure (1− q) of (L,L) meetings.
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consume their production to obtain utility λ in case the offer is rejected.10 Since

buyers have deep pockets and no bargaining power, the price pm for meeting m is

pHH = uH > uL = pHL = pLb. (1)

We assume there are initially two means of payment (cash and bank deposits)

and that buyers can costlessly exchange one for the other.11 Due to their physical

nature, offline purchases can be settled both in cash (C) and in deposits (D),

e.g. via debit or credit card. By contrast, the exchange of physical currency is

too cumbersome for online sales, so they require a digital payment instrument

such as deposits. We assume that the use of deposits enables banks to observe the

sellers’ realized meeting m because payment flows are informative about borrowers’

financial situation (Mester et al., 2007; Norden and Weber, 2010; Puri et al., 2017).

This is not the case when cash is used. When bank deposits are used as means of

payment, absconding at t = 1 has a fixed effort cost of e > 0. This captures the

notion that deposit flows enable the bank to monitor sellers’ activity more closely,

which makes absconding more difficult and requires additional effort. When sellers

abscond, which is off the equilibrium path, we assume that the bank does not learn

their type but uses the prior distribution of seller type as its belief.

We refer to the combination of trading venue and payment means as a trading

scheme, denoted by τ . There are three possibilities in the basic model: offline-cash

(OFF-C), offline-deposits (OFF-D), and online-deposits (ON-D).

The timing is shown in Figure 1. At t = 0, sellers and banks are matched,

sellers borrow one unit of the good and choose their trading scheme τ . At t = 1,

sellers learn their type and are then matched with a buyer. Given the meeting

m, sellers offer pm. At the end of t = 1, given the means of payment used, the

bank offers a menu {(rm, km)}, where rm is the seller’s repayment of the initial
10In a previous version (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=

4110431), we study a more general Nash bargaining problem between buyers and sellers. While
the analysis is more complex, the main results are unchanged.

11This assumption can be micro-founded using a new monetarist model, where the central
bank implements the Friedman rule and thus ensures that buyers are indifferent about holding
any particular means of payment. Notes are available upon request from the authors.
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loan and km ∈ {0, 1} is the value of the continuation loan. The bank chooses an

interest rate i on the continuation loan at t = 3. Subsequently, H-sellers who have

received a continuation loan produce θ and repay i to the bank, or abscond with

production to obtain a payoff λθ. L-sellers who have received a loan abscond with

investment to obtain a payoff λ.

Figure 1: Timeline.

As a benchmark, consider the economy with full information. Welfare is

maximized whenever all sellers distribute their goods online and banks grants a

second loan to all H-sellers and no loan to L-sellers. Offline distribution is always

inefficient because it leads to fewer (H,H) meetings. This benchmark is useful as

we now study the equilibrium in the economy with asymmetric information.

3 Equilibrium

To solve for the equilibrium, we proceed backwards. We start with banks’ decision

whether to extend a continuation loan. We then solve for the optimal contract

menu, and then study sellers’ choice of trading scheme. Our equilibrium definition

follows.
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Definition 1. An equilibrium consists of choices (ℓ, {(rm, km)}, i, τ, pm) such that

1. banks choose initial investment ℓ ∈ {0, 1}, a menu of repayment and contin-

uation investment {(rm, km)}, and repayment i to maximize expected profits,

taking τ and pm as given;

2. sellers choose a trading scheme τ ∈ {OFF-C,ON-D,OFF-D} to maximize

expected profits, taking (ℓ, {(rm, km)}, i, pm) as given; and

3. bilateral prices pm are given by (1).

3.1 Bank’s refinancing choice

The bank possibly faces adverse selection, so its lending decision at t = 2 depends

on whether it is informed about the seller’s type. When the bank is informed,

L-sellers do not receive a continuation loan because they will produce nothing.

By contrast, H-sellers receive financing if the bank can recover its unit cost of

investment. Since the bank is a monopolist at t = 2, it sets the repayment on the

second loan to

i∗ = (1− λ)θ, (2)

so that H-sellers just obtain their outside option λθ. We assume that it is profitable

to extend a continuation loan to H-sellers, but the level of adverse selection is high

enough to render uninformed lending unprofitable.12 This can be summarized as

follows.

Assumption 1. 1/q > (1− λ)θ > 1.

Assumption 1 also implies that the bank finds it optimal to lend to H-sellers

at t = 2 even upon default on their first loan. In the same way that the bank

cannot commit to loan terms, it cannot commit to not extending a loan upon

default. In Appendix B.1, we consider an alternative setup in which banks can
12If the level of adverse selection is low, banks prefer to lend to sellers of unknown type in the

second stage. We analyse this case in Appendix B.2.
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commit to not extending a loan upon seller default, and show that it leads to the

same qualitative trade-offs between the deposits and cash.

3.2 Loan repayment

Consider the repayment of the initial loan at t = 1. When sellers accept payment

in bank deposits (under the OFF-D or ON-D schemes), the bank directly observes

the sellers realized meeting and can set the interest rate accordingly. When sales

are settled in cash under the OFF-C scheme, however, the bank can only elicit

this information by offering a menu of contracts (“screening”).

To make matters interesting, we assume that the payoff on the continuation

project exceeds uL, but at the same time is sufficiently smaller than uH . This

ensures that the bank faces a non-trivial choice among different types of contract

menus under the OFF-C scheme, because it can extract the full continuation

surplus from HH-sellers, but not HL-sellers.

Assumption 2. uH − uL ≥ θ > uL.

To simplify the exposition in the main text, we also assume that uL > e
λ
.

This parameter restriction eliminates the need for having to study various cases

with identical economic implications but different payoffs.13

Settlement in cash. We first consider the OFF-C scheme. Ideally, the bank

wants to learn both the type of the seller (to choose refinancing appropriately) as

well as the sales price (to set the interest rate as high as possible). However, the

fact that H-sellers sometimes realize low sales complicates the bank’s inference

problem and prevents it from soliciting all this information.

In choosing the optimal contract, the bank faces a trade-off. It can either of-

fer a separating contract that identifies all H-sellers, or alternatively offer a partial

pooling contract that only singles out HH-sellers, while the remaining HL-sellers
13Specifically, these assumptions ensure that the feasibility constraint of the HH-seller and the

feasibility constraints under the ON-D scheme are always slack. See Appendix A for details.
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are pooled with L-sellers.14 While the first contract menu generates more infor-

mation, it requires the bank to leave additional informational rents to sellers by

foregoing some interest rate income. Lemma 1 summarizes the bank’s trade-off.

Lemma 1. Suppose that sellers choose the OFF-C trading scheme. Then, the

bank offers a separating contract (S) for

(1− q)(θ − 1) > λ(θ − uL), (3)

and a partial pooling contract (P) otherwise. The respective interest rates are

rSLb = (1− λ)uL, rSHb = uL, rPLb = rPHL = (1− λ)uL, and rPHH = (1− λ)uL + λθ.

Equation (3) captures the trade-off inherent in the bank’s screening problem.

Under separation, the bank elicits more information than with partial pooling, so

the continuation surplus θ−1 is generated more frequently. At the same time, the

bank must cede a some share of the resulting surplus to ensure that HL-sellers can

afford the loan repayment. More specifically, it must lower the “spread” between

high and low interest rates from λθ to λuL.

As usual under monopolistic screening with two types (Bolton and Dewa-

tripont, 2004), the low interest rate is always pinned down by the participation

constraint of L-sellers, who just earn their outside option λuL. The spread between

the high and the low interest rate is determined by the incentive constraint of HH-

sellers in the partial pooling contract, and the feasibility constraint of HL-sellers

in the separating contract.

Settlement in deposits. When the seller chooses settlement in deposits

(either under the OFF-D or ON-D scheme), the bank observes the seller’s realized

meeting, so the contract does not have to satisfy any incentive constraints for

truthful reporting. Accordingly, all interest rates are pinned down by the relevant

participation constraints, which include the cost e that sellers incur when forging

their accounts. Since the bank is informed, all H-sellers get refinanced at t = 2.
14It is straightforward to show that full pooling is never optimal for the bank, since it generates

no information at all and also implies lower interest rate income.
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Lemma 2. Suppose that sellers choose settlement in deposits (either OFF-D or

ON-D). Then the bank charges rDHH = (1−λ)uH+e and rDHL = rDLb = (1−λ)uL+e.

The only difference between the OFF-D and ON-D schemes is that rDHL does

not arise arises under the ON-D scheme. With online distribution, there are no

(H,L)-meetings due to perfect matching, so that the bank only sets rDHH and rDLb.

Bank profits. In order for the bank to engage in lending at t = 0, its profits

must be non-negative under each of these types of contracts. Given the contract

menu {(rm, km)}, expected bank profits are

B = Em

[
rm − 1 + km

(
θ(1− λ)− 1

)]
, (4)

where Em [·] denotes the expectations over all possible meetings m, and we have

already substituted for the equilibrium interest rate on the second loan, i∗. Eval-

uating Equation (4) for all three contract menus (the expressions are given in

Appendices A.1 and A.2), the following condition ensures that bank profits are

always positive.

uL ≥ max

{
1− q2(θ − 1)

1− λ
,
1− q[(1− λ)θ − 1]

1− λ(1− q)

}
(5)

We henceforth assume this inequality to hold, so that the bank always extends

the initial loan, ℓ∗ = 1.

3.3 Seller’s choice of trading scheme

We can now determine the seller’s choice of trading scheme at t = 0. His expected

profits are sales minus interest payment, pm−rm, plus the benefits from obtaining

continuation financing, where the expectation is taken over all possible meetings

m, and the bank’s choices of repayment menu and refinancing are taken as given.

Under the partial pooling contract, only HH-sellers get refinanced when trad-
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ing offline with physical cash. We can then write sellers’ expected profits as

SP
OFF−C = q2(uH − rPHH + λθ) + q(1− q)(uL − rPHL) + (1− q)(uL − rPLb)

= q2[λuH + (1− λ)(uH − uL)] + (1− q2)λuL. (6)

In this case, HH-sellers earn an informational rent equal to (1−λ)(uH−uL), while

all other sellers just obtain their outside option.

With the separating contract, by contrast, all H-sellers are refinanced under

the OFF-C scheme. Thus, expected profits are given by

SS
OFF−C = q2(uH − rSHH + λθ) + q(1− q)(uL − rSHL + λθ) + (1− q)(uL − rSLb) (7)

= q2[λuH + (1− λ)(uH − uL) + λ(θ − uL)] + q(1− q)[λuL + λ(θ − uL)] + (1− q)λuL.

Unlike with partial pooling, all H-sellers earn a rent. Since the bank wants to

induce HL-sellers to opt for the high repayment, it must to lower the “spread” from

λθ to λuL (the maximum spread that HL-sellers are able to pay). Accordingly,

the bank no longer extracts the full surplus from continuation financing.

Expected profits under the ON-D and OFF-D schemes are

SON−D = qλuH + (1− q)λuL − (e− qλθ) (8)

SOFF−D = q2λuH + (1− q2)λuL − (e− qλθ) (9)

When payments are settled in deposits, all sellers receive exactly their reservation

utility, minus a term that represents the cost of forging their accounts net of the

benefit from strategically defaulting on the first loan.15 The following assumption

provides a sufficient condition to rule out such strategic default.

Assumption 3. e ≥ qλθ.
15With deposits, the bank learns sellers’ type independently of the loan repayment. Accord-

ingly, H-sellers can in principle default on their first loan and still obtain continuation financing
at t = 2, since the bank will find the extension of a new loan optimal (Assumption 1). With
cash, this cannot happen as the bank only learns the seller’s type through repayment.
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It is immediate that SON−D > SOFF−D, so sellers never choose the OFF-

D scheme. Intuitively, conditional on using deposits, sellers can only lose from

remaining offline through inefficient matches with buyers. Lemma 1 and Equations

(6)-(8) then lead to the next result.

Proposition 1. (Equilibrium in the baseline model)

1. For (1− q)(θ− 1) < λ(θ− uL), the bank offers a partial pooling contract under

the OFF-C scheme. Sellers distribute online if q(λ− q)(uH −uL) ≥ (e− qλθ), and

offline otherwise.

2. For (1− q)(θ− 1) > λ(θ− uL), the bank offers a separating contract under the

OFF-C scheme. Sellers distribute online if q(λ−q)(uH −uL) ≥ (e−qλθ)+qλ(θ−

uL), and offline otherwise.

3. All online sales are settled in deposits (by assumption).

When choosing among trading schemes, sellers trade off the efficiency gains

from online distribution and the informational rents that arise from staying anony-

mous with cash. To understand how this trade-off varies with the model’s param-

eters, it is most instructive to look at the case where the bank offers a partial

pooling contract under the OFF-C scheme. Ignoring the term e − qλθ, we can

write the difference SON−D − SP
OFF−C as

q(1− q)λ(uH − uL)− q2(1− λ)(uH − uL). (10)

The first term of (10) represents the efficiency gains from online distribution.

Under the ON-D scheme, (H,L)-meetings are no longer possible, which increases

sales from uL to uH for a fraction q(1−q) of all meetings. Sellers reap a share λ of

these gains. The second term of (10) represents the private gains from anonymity

with cash. Under the ON-D scheme, banks learn sellers’ types for free, so that the

mass q2 of HH-sellers no longer earn the informational rent (1 − λ)(uH − uL). It

is straightforward to deduce that Equation (10) is positive if and only if λ > q.

The intuition for the case where the bank offers the separating contract under

the OFF-C scheme is similar, but the interaction between both q and λ becomes
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more complex. The reason for this is twofold, as can be seen from Equation (7).

First, with separation, the mass of sellers earning an informational rent increases

to 1 − q. Second, unlike with partial pooling, these rents are no longer strictly

decreasing in λ because of the additional component λ(θ − uL).

Whenever sellers opt for offline distribution, the equilibrium is inefficient

because of the relatively low utility generated in (H,L)-meetings. However, an

additional inefficiency arises under the partial pooling contract. In this case, the

bank fails to provide continuation financing to HL-sellers, so that the extra surplus

θ − 1 is realized less often.

4 Central bank digital currency

In this section, we expand the set of payment instruments by introducing a central

bank digital currency. We think of CBDC as a digital version of cash. In our con-

text, this means that CBDC enables sellers to conduct online sales (like deposits),

but at the same time does not reveal any information to the bank (like cash). Ac-

cordingly, sellers can also choose an online-CBDC trading scheme (ON-CBDC).16

Lemma 3. Suppose that sellers choose the ON-CBDC scheme. Then, the bank

always offers a separating contract with interest rates rCBDC
H = (1−λ)uL+λθ and

rCBDC
L = (1− λ)uL.

With online distribution, the matching of buyers and sellers is efficient. Ac-

cordingly, the bank can no longer opt for partial pooling, and thus always offers a

separating contract. Sellers’ expected payoff is given by

SON−CBDC = q [λuH + (1− λ)(uH − uL)] + (1− q)λuL. (11)

Comparison with Equation (8) shows that SON−CBDC > SON−D, and hence CBDC

fully displaces deposits. The separating contract enables the bank to appropriate
16We do not consider an offline-CBDC scheme because it is the same as the OFF-C scheme.
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the continuation surplus, but leaves all the gains from more efficient matching to

the seller. With deposits, some of these gains also go to the bank, making the

seller strictly better off with CBDC. Further comparison of Equations (6) and (11)

leads to the following result.

Proposition 2. (Equilibrium with CBDC)

1. For (1− q)(θ− 1) > λ(θ− uL), the bank offers a separating contract under the

OFF-C scheme. Then, sellers distribute online if (1 − q)(uH − uL) ≥ λ(θ − uL),

and offline otherwise.

2. For (1− q)(θ − 1) < λ(θ − uL), sellers always distribute online.

3. All online sales are settled in CBDC.

Comparing Propositions 1 and 2 shows that the introduction of CBDC leads

to an increase in online sales. The effect is most pronounced in the parameter

region where the bank offers a partial pooling contract under the OFF-C scheme.

In this case, sellers always opt for for online distribution with CBDC. Intuitively,

digital cash enables sellers to capture the best of both worlds. They can reap the

efficiency gains of online distribution, and at the same time earn informational

rents from remaining anonymous towards the bank.

However, cash is not fully crowded out. If the bank offers a separating

contract under the OFF-C scheme, sellers stay offline for some parameter com-

binations. In this case, the rents from using cash are strictly higher than those

earned with CBDC. Since HL-sellers generate lower sales offline, the bank can no

longer extract the entire surplus generated from continuation financing. Accord-

ingly, if the benefits from online distribution are not too large, sellers are better

off with cash.

The introduction of CBDC raises welfare through two channels. First, the

increase in online distribution implies that the matching of buyers and sellers

becomes more efficient, so the utility uH is reaped more frequently. Second, with

CBDC, the bank always opts for full separation, and thus provides continuation

financing to all H-sellers. This is not the case under the OFF-C scheme with the
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partial pooling contract, where only HH-sellers are granted a second loan.

5 Digital platforms with financial services

So far, we have been silent about the way online sales are conducted. In this

section, we consider a richer environment in which online sales occur through a

digital platform. We first study the case where the platform can also lend to

sellers and provide payment tokens. Perhaps surprisingly, we show that sellers

will abandon CBDC and adopt the platform token instead, which achieves the

social optimum. We then study an extension where the platform uses tokens to

fend off competition by potential entrants. In this case, tokens remain used, but

the social welfare is no longer maximized.

5.1 Competition in the loan market

Here we assume that the platform can lend to the seller at t = 2. Moreover, it can

provide a digital token as means of payment at t = 0, giving rise to an online-token

(ON-T) trading scheme. However, we assume that banks remain monopolists for

the first loan.17 The platform has the same funding costs as the bank.

Clearly, the distribution of information between the bank and the platform

is critical for competition in the market for continuation loans. We assume that

the platform learns the meeting m only if the seller uses tokens to settle his online

transactions. In Appendix B.3, we study an extension of the model in which

the platform also derives information from observing the sales it intermediates.

We show that all of our results, especially the seller’s choice between tokens and
17This can be rationalized by assuming that banks, unlike platforms, are able to resolve an

adverse selection problem at t = 0. Suppose that there are productive and entirely unproductive
sellers seeking to borrow. Unproductive sellers never produce anything but consume the loan,
while productive sellers become H-sellers with probability q or L-sellers with probability 1 − q.
The bank’s screening technology determines which seller is productive, enabling the bank to
engage in profitable lending at t = 0. By contrast, the platform cannot screen and thus finds it
unprofitable to lend in the initial round of financing.

17



CBDC, are unchanged as long as tokens provide some informational value.

We assume that the platform and the bank engage in Bertrand competition

at t = 2 when both lenders have the same information. In this case, the seller

obtains a share s = 1− 1
θ

of the surplus θ.18 When there is no competition in the

lending market at t = 2, we assume that the seller can extract a share λ from his

sales at t = 3 when borrowing from either the bank or the platform.

Settlement in deposits. To start, suppose that sellers use the platform and

choose deposits as means of payment. This implies that only the bank knows the

sellers’ type and the platform does not lend. Accordingly, the bank is a monopolist

(as in Section 3) and sellers obtain

SCOMP
ON−D = SON−D, (12)

where the superscript COMP denotes competition in the lending market.

Settlement in CBDC. Next, suppose the seller uses CBDC. This implies

that neither the platform nor the bank can learn his type from his payments

activity. Since the platform cannot lend, the analysis is the same as in Section 4.

The bank always uses the separating contract, and the seller’s payoff is given by

SCOMP
ON−CBDC = SON−CBDC . (13)

Settlement in tokens. Finally, suppose that the seller uses the platform’s

tokens as means of payment (the ON-T scheme). Thus, the platform learns the

seller’s meeting m from his payment activity, while the bank can only acquire

information through screening. The following lemma summarizes the bank’s choice

of lending contract.

Lemma 4. Suppose that sellers choose the ON-T trading scheme. Then, for

1 + λ

1− λ
≤ θ (14)

18Lenders net profit is (1− s)θ− 1, which must be equal to zero under Bertrand competition.
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the bank offers a separating contract with rTL = (1−λ)uL and rTH = rL+(s− λ) θ.

Otherwise, the bank offers a pooling contract with r̄ = (1− λ)uL.

While the bank would always prefer to opt for separation, Lemma 4 shows

that this is not always feasible when sellers choose settlement in tokens—unlike

under the ON-CBDC scheme. This result arises because the platform is informed

when tokens are used, and thus always willing to lend. The presence of a competing

informed lender at t = 2 alters H-sellers’ incentives to mimic the behaviour of

L-sellers towards the bank, and can therefore limit the bank’s ability to elicit

information.

Under the separating contract, the bank is also informed, so that H-sellers

can reap the competitive surplus sθ from the second loan upon repaying rTH at t =

1. Incentive compatibility then requires that they must prefer truthful reporting

to lying. Pretending to be an L-seller, they would only repay rTL , but the bank

would not learn their type. Accordingly, the platform would act as a monopolist

at t = 2, and only leave sellers with their outside option λθ. The spread in the

lending rate must therefore satisfy (s− λ)θ ≥ rTH − rTL .

The incentives for L-sellers are identical to the case without the platform

because an informed lender will never grant them a loan. Thus, as before, in-

centive compatibility dictates that the cost of lying must exceed the benefit from

absconding with the continuation loan, rTH −rTL ≥ λ. Taken together, a separating

contract requires that both types of sellers report truthfully. This is feasible only

if (s− λ)θ > λ, which can be simplified to Condition (14).

Interestingly, expected seller profits are the same for both types of contracts.

In either case, they earn

SC
ON−T = q [λuH + (1− λ)(uH − uL) + λθ] + (1− q)λuL. (15)

To gain intuition for this result, note that the H-seller’s surplus from competition

in the lending market between the bank and the platform is equal to (s − λ)θ.

19



Lemma 4 shows that this is exactly equal to the difference between the high interest

rate in the separating equilibrium and the pooling rate, rTH − r̄.

The contract menu for the first loan does not affect the seller’s payoff, but

it determines the split of profits between the bank and the platform. When the

separating contract is used, there is perfect competition for the second loan, so the

platform makes zero profits and the entire surplus goes to the bank. By contrast,

when separation is infeasible, the pooling contract is used and the platform is a

monopolist lender for the continuation loan and earns positive profits.

Comparing Equations (11), (13), and (15), we see that sellers always prefer

tokens over CBDC or deposits, because the use of tokens enable competition (since

the bank elicits information via the separating contract) while the use of CBDC

suppresses it (since the platform remains uninformed). Further comparison with

the seller’s payoff under the OFF-C scheme (Equations (6) and (7)) allows us to

conclude the following.

Proposition 3. (Equilibrium with a digital platform)

Sellers always distribute their goods online. All online sales are settled with tokens.

The use of tokens enables the economy to reach the social optimum. It is

an improvement upon anonymous CBDC because goods are always distributed

online. Intuitively, increased competition in the credit market ensures that sellers

are able to reap part of the extra surplus θ−1 that is generated through informed

lending at t = 2. This helps to align private incentives with social welfare.

5.2 Platform innovation

Digital platforms are often blamed for anti-competitive practices. One example in

this direction is the concept of a “walled garden,” which aims to lock in consumers

by limiting interoperability with other platforms. To analyze this issue, we modify

our setup as follows. Suppose that a second platform (the “entrant”) is set up at

t = 2 with probability π. The new platform offers a better matching technology
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which enables sellers to generate a payoff θ̂ > θ with a second loan. Otherwise,

the entrant is identical to the incumbent, it can also grant loans and issue tokens

as payment means, and faces a unit funding cost.

The incumbent is a walled garden in the sense that sellers will not learn

about the emergence of the competitor platform if they use tokens as means of

payment. When using deposits or CBDC, the seller learns at t = 2 that a new

platform has entered only after repaying the initial loan to the bank.

We denote ex-ante expected productivity by θ̃ ≡ πθ̂ + (1 − π)θ. To keep

matters simple, we adjust Assumptions 1 and 3 to reflect the extended setup.

Assumption 1′. 1/q > (1− λ)θ̂ and (1− λ)θ > 1.

Assumption 2′. uH − uL > θ̃ and θ > uL.

Assumption 3′. e ≥ qλθ̃.

We assume that the bank can compete with platforms, and that platforms

with identical information compete with each other. Bertrand competition implies

that the seller appropriates the entire surplus net of funding costs, θ′ − 1, for

θ′ ∈ {θ, θ̂}.

As before, the incumbent platform only learns the seller’s type if he uses its

token as means of payment. In Appendix B.3, we consider the case where the

platform also learns from observing the sales it intermediates. As long as tokens

provide some incremental information, our results are unchanged.

Settlement in token of incumbent. If the seller uses the incumbent

platform’s token, he does not learn about the existence of the new platform, and

his payoff is as in the case with a single platform studied above:

SPCOMP
ON−T = SCOMP

ON−T , (16)

where PCOMP stands for platform competition.
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Settlement in deposits. Now suppose instead that the seller uses deposits.

Accounting for the increased productivity, the seller’s payoff using deposits is

SPCOMP
ON−D = qλuH + (1− q)λuL − (e− qλθ̃) > SON−D.

Settlement in CBDC. Finally, suppose that the seller uses CBDC, so

neither the bank nor the platform learn his type. While the seller learns about the

emergence of the new platform, neither platform is informed and thus unwilling to

provide continuation finance. Thus, the seller is stuck with the bank, who pockets

the additional surplus. Accordingly, the payoff under CBDC is

SPCOMP
ON−CBDC = SON−CBDC

It directly follows from Assumption 3′ that SPCOMP
ON−CBDC > SPCOMP

ON−D and deposits are

thus never used. Moreover, direct calculations reveal that SPCOMP
ON−T > SPCOMP

ON−CBDC ,

and thus tokens remain the payment method of choice for sellers.

Proposition 4. (Equilibrium with platform innovation)

The equilibrium with platform innovation is the same as the equilibrium with a

single digital platform characterized in Lemma 4 and Proposition 3. All sales take

place online on the incumbent platform and are settled with tokens.

The seller opts for the lesser of two evils. When using the incumbent plat-

form’s token, he does not learn about the entrant platform. This allows him to

limit the bank’s market power, but prevents the realization of the efficiency gains

associated with platform entry. By contrast, if the seller uses deposits, he learns

about the entrant, but faces a monopoly bank. While this increases investment

efficiency, the bank appropriates all of the additional surplus through the interest

rate on the first loan. Accordingly, the seller is better off with tokens. CBDC

eliminates competition in lending, so it is an unattractive alternative.

Note that this economy no longer achieves the social optimum. Sellers stay

with the incumbent platform even when a more efficient entrant is available.
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6 Data sharing through CBDC

As the previous sections highlight, sellers can choose which financier gets informed

by opting for the right payment instrument. Leaving contractual arrangements

aside, cash or CBDC leave all creditors uninformed. In this section, we expand

the features of CBDC and assume it is designed such that sellers can control the

information revealed to any lenders, at any point in time. This is consistent with

a broader concept of privacy that goes beyond the dimension of anonymity, as

summarized succinctly by Acquisti et al. (2016): “Privacy is not the opposite of

sharing—rather it is control over sharing.”

We first consider the previous model in which the bank competes with a

digital platform for the continuation loan. Then, we consider the model with

the more efficient entrant platform, which also allows us to study the effects of

data-sharing on inter-platform competition.

6.1 Loan competition and data sharing

The ability to share data through CBDC has profound consequences for the equi-

librium in the lending market at t = 2. The seller has no incentive to reveal his

type before repayment because the bank cannot commit to the contract terms.

However, H-sellers have an incentive to reveal their type after the repayment be-

cause it enables them to introduce perfect competition between the bank and the

platform for the continuation loan. Given Assumption 1, the bank will find it opti-

mal to compete for such a loan, and H-sellers will obtain sθ from the continuation

investment. Formally, if the bank uses a separating contract, the ICs read

uH − rH + sθ ≥ uH − rL + sθ

uL − rL ≥ uL − rH + λ

which implies rL ≥ rH ≥ rL + λ, a contradiction. Hence a separating contract is

never feasible, and the bank can only offer a pooling contract with the interest

23



rate r̄ = (1− λ)uL. Therefore, seller’s ex-ante expected payoff is given by

SCOMP, DS
ON−CBDC = q[λuH + (1− λ)(uH − uL) + sθ] + (1− q)λuL, (17)

where DS indicates that the CBDC allows for data-sharing. Comparing with

Equation (16) reveals that SCOMP, DS
ON−CBDC > SCOMP

ON−T ,19 we can conclude the following.

Proposition 5. (Equilibrium with a digital platform and data sharing

via CBDC)

Sellers always distribute their goods online. All online sales are settled with CBDC.

6.2 Platform competition and data sharing

We now turn to analyze the implications of data sharing for platform competition.

Suppose the seller uses CBDC, which implies that he becomes aware of the new

platform. Since H-sellers can reveal their type after repayment of the first loan,

only the pooling contract is feasible, with r̄ = (1 − λ)uL. The seller’s expected

payoff under CBDC with data sharing is then equal to

SPCOMP, DS
ON−CBDC = q

[
λuH + (1− λ)(uH − uL) + (θ̃ − 1)

]
+ (1− q)λuL

= SPCOMP
ON−CBDC + q(θ̃ − 1) (18)

= SCOMP
ON−CBDC + q(θ̃ − θ). (19)

The last term in Equation (18), q(θ̃ − 1), captures the additional benefit of com-

petition that data sharing provides relative to an environment where CBDC only

allows sellers to hide their type. Similarly, the term q(θ̃ − θ) in (19) captures the

additional benefit of platform innovation that data sharing allows to reap relative

to an environment with only a single platform. Since payoffs under deposits and

tokens are identical to those in Section 5.2, we can directly conclude the following.

Proposition 6. (Equilibrium with platform competition and data sharing

19This ranking arises because sθ = (θ − 1), and s > λ, and Assumption 1.
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via CBDC)

Sellers always distribute their goods online, and use the entrant platform whenever

available. All online sales are settled with CBDC. The economy reaches first best.

If follows from Proposition 6 that a CBDC with data sharing capabilities

achieves the first-best allocation in the sense that (1) all sellers use the more

efficient online platform technology at t = 1, (2) all H-sellers get a second loan,

and (3) all H-sellers use the most efficient platform at t = 3.

7 Conclusion

We analyzed how digital privacy concerns give rise to the need for a payment

instrument that permits competition through allowing selective data sharing. Our

findings have important implications for the design of CBDC. In particular, CBDC

may only become successful if it facilitates data sharing. While private means

of payment may in principle also provide such functionalities, incentives for the

monopolization of data access may be too strong. However, absent data-sharing,

private payment instruments such as digital tokens issued by platforms may crowd

out CBDC, and also threaten the role of deposits as payment instrument in the

digital sphere. As we have shown, sellers always prefer to use these tokens to

deposits when they are available because they can then escape banks’ capture. In

other words, in our environment disintermediation takes place because the banking

sector is not competitive and platform tokens discipline banks into competition.

We have left unspecified the details of how financiers can learn by inspecting

payment flows. Further investigation in this direction may give interesting insights.

Also, we have not considered how data generated on a platform can be used to

improve future sales, (i.e. how trading on the platform at t = 1 may lead to better

trading at t = 3). These are important topics that we leave for future research.
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A Proofs

A.1 Proof of Lemma 1

First, consider the separating contract. Since the bank provides re-financing

to all H-sellers, the incentive compatibility constraints (ICs) imply rSHH = rSHL.

Hence, the contract must satisfy the following simplified ICs:

uH − rSHH + λθ ≥ uH − rSLb

uH − rSHL + λθ ≥ uL − rSLb

uL − rSLb ≥ uL − rSLb + λ,

which yields λθ ≥ rSHH − rSLb ≥ λ. The participation constraints (PCs) are

uH − rSHH + λθ ≥ λuH ,

uL − rSHL + λθ ≥ λuL,

uL − rSLb ≥ λuL,

because the bank does not learn the seller’s type upon absconding at t = 1, uses

the prior that a fraction q of sellers are of type H and, thus, does not grant a

continuation loan due to high adverse selection (Assumption 1). Moreover, the

feasibility constraints of sellers having enough funds for repayment at t = 1 are

uH ≥ rSHH , uL ≥ rSHL, uL ≥ rSL.

Clearly, only the second feasibility constraint may be binding in equilibrium.

Under profit maximization, the last participation constraint binds, so rSLb =

(1 − λ)uL. (Note that this participation constraint could have been slack and

the IC of HH-sellers could have been binding but this would yield strictly lower

expected bank profits.) Then, Assumption 2 implies that the feasibility constraint

of HL-sellers to have sufficient funds for repayment, uL ≥ rSHH , binds before the
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IC of HH-seller binds, resulting in the following interest rate, rSHH = uL. Taken

together, the separating contract yields an expected bank profit of

BS
OFF−C = q(rSHH − 1) + (1− q)(rSL − 1) + q [(1− λ)θ − 1]

= (1− λ)uL − 1 + q(θ − 1)− qλ(θ − uL), (20)

which is the interest income net of funding costs for the H-sellers and L-sellers as

well as the income from extending a continuation loan to all H-sellers at t = 2.

Second, consider the partial pooling contract, under which the bank only

extends continuation finance to HH-sellers. Since HL-sellers do not obtain re-

financing, rPHL = rPLb follows. Hence, the simplified ICs read

uH − rPHH + λθ ≥ uH − rPLb,

uL − rPHL ≥ uL − rPHH + λθ,

uL − rPLb ≥ uL − rPHH + λ,

because misreporting your type allows a seller to receive a continuation loan, which

is worth λθ to a HL-seller (who can abscond with future production at t = 3) and

λ to a L-seller (who can abscond with the loan at t = 2). The first two incentive

compatibility constraints directly yield rPHH = rPLb+λθ and the third constraint is

slack. The partial pooling contract must satisfy the following PCs:

uH − rPHH + λθ ≥ λuH ,

uL − rPHL ≥ λuL,

uL − rPLb ≥ λuL,

Profit maximization yields rPLb = (1 − λ)uL, where the PC of HL-sellers and L-

sellers bind while the PC of H-seller is slack, and rPHH = (1−λ)uL+λθ. Thus, the

low interest rate is again pinned down by L-sellers’ PC. The feasibility constraint

for all sellers is ensured by the bounds on uH and uL introduced in the main text
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(below Assumption 2). Expected bank profits under partial pooling are

BP
OFF−C = q2(rPHH − 1) + (1− q2)(rPHL − 1) + q2 [(1− λ)θ − 1]

= (1− λ)uL − 1 + q2(θ − 1). (21)

Comparing Equations (20) and (21) leads to the inequality stated in Lemma 1.

We make a final remark to close the proof. A pooling contract would imply

an interest rate r̄ = (1 − λ)uL for all sellers and would yield strictly lower bank

profits than the contracts characterized above.

A.2 Proof of Lemma 2

When deposits are used, the bank learns the realized meeting m. Thus, no ICs

are needed and the relevant PCs are

uH − rDHH + λθ ≥ λuH − e+ λθ

uL − rDHL + λθ ≥ λuL − e+ λθ

uL − rDLb ≥ λuL − e,

where the use of deposits implies that the bank always learns the seller type and,

thus, extends a continuation loan to all H-sellers even upon absconding at t = 1.

Profit maximization implies that each of these PCs bind, resulting in the

interest rate stated. Note that the bounds on uL and uH (just below Assumption

2) ensures that the feasibility constraints, which read e ≤ λuH and e ≤ λuL, are

always slack. Thus, the expected profit of the bank under the ON-D scheme is

BON−D = q(rDHH − 1) + (1− q)(rDL − 1) + q [(1− λ)θ − 1]

= (1− λ)uL − 1 + q(θ − 1) + (e− qλθ) + q(1− λ)(uH − uL). (22)

It follows immediately that BON−D > max{BS
OFF−C , B

P
OFF−C}.
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A.3 Proof of Proposition 2

Since there are only two types of matches with online sales, the bank’s choice under

the ON-CBDC scheme is either a separating or a pooling contract. As usual, the

PC of L-sellers binds under separation, rCBDC
L = (1− λ)uL. The ICs are

uH − rCBDC
HH + λθ ≥ uH − rCBDC

L

uL − rCBDC
L ≥ uL − rCBDC

HH + λ,

which together with profit-maximization yields

rCBDC
HH = rCBDC

L + λθ,

which is feasible given the lower bound on uH . The bank’s expected profits are

BS
ON−CBDC = q

[
rCBDC
HH + (1− λ)θ − 1

]
+ (1− q)rCBDC

L − 1

= (1− λ)uL + q(θ − 1)− 1

A pooling contract with r̄ = (1−λ)uL yields strictly lower profits, (1−λ)uL−1, so

the bank always chooses separation. Finally, comparing the expected profits of the

seller, we observe SON−CBDC > SP
OFF−C always holds, while SON−CBDC > SS

OFF−C

may or may not hold, and rewriting yields the condition given in the proposition.

A.4 Proof of Lemma 4

The separating contract under the ON-T scheme has to satisfy the following ICs:

uH − rTH + sθ ≥ uH − rTL + λθ

uL − rTL ≥ uL − rTH + λ.

When an H-seller pretends to be an L-seller, he forgoes the competitive surplus sθ

and instead obtains λθ by borrowing from the (monopoly) platform. Similarly, an
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L-seller can obtain λ when pretending to be an H-seller through absconding with

the continuation loan. Combining both inequalities, we get

(s− λ) θ ≥ rTH − rTL ≥ λ

While the separating contract was always feasible without competition, it is now

no longer feasible if λ > (s− λ) θ, or 1+λ
1−λ

> θ. In this case, L-sellers derive a higher

benefit from pretending to be H-sellers than H-sellers themselves. Participation

by L-sellers together with profit maximization imply a low rate of rTL = (1−λ)uL.

Assuming feasibility (θ ≥ 1+λ
1−λ

), the profit-maximizing bank sets rTH = rTL +

(s− λ) θ, provided H-sellers can repay the high rate, uH ≥ rTH . That is, feasibility

of the H-seller requires
uH + 1

1− λ
− uL ≥ θ, (23)

which holds given the assumed lower bound on uH (stated below Assumption 2).

Thus, bank profits are

BS
ON−T = q

[
rTH − 1 +

1

2
((1− s)θ − 1)

]
+ (1− q)(rTL − 1)

= (1− λ)uL + q(s− λ)θ − 1.

As usual, the rate for the pooling contract is pinned down by the participation

constraint of L-sellers, r̄ = (1 − λ)uL. It is straightforward to verify that this

implies lower bank profits, B̄ON−T = (1− λ)uL − 1, than the separating contract,

so the bank chooses to offer the pooling contract only when separation is infeasible.

A.5 Proof of Proposition 3

Using the interest rates from Lemma 4, the expected profit to the seller, SC
ON−T , is

given in Equation (15). Because of the additional benefit from competition in the

lending market, λθ, tokens dominate CBDC for the seller, SON−T > SON−CBDC .

Moreover, tokens dominate cash when the bank offers a pooling contract, SON−T >

SP
OFF−C , and when it offers a separating contract, SON−T > SS

OFF−C .
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B Additional results

B.1 Commitment to punish upon default

We have so far assumed that the bank cannot commit to punish the seller upon

default on the loan. While this assumption is fully in line with the bank also not

being able to commit to the loan terms, we consider the alternative case in which

the bank can commit to such a punishment in this section. In this case, H-sellers

who want refinancing must repay their loan when deposits are used.

Consider the OFF-D trading scheme (which nests ON-D). The PCs become

uH − rDHH + λθ ≥ λuH

uL − rDHL + λθ ≥ λuL

uL − rDLb ≥ λuL.

Assumption 2 and the bounds on uL and uH stated below it imply that the feasi-

bility constraint of the L-type is slack and the feasibility constraint of the HL-type

binds. We assume that e
λ
> uH − θ, so the feasibility constraint of the HH-type is

slack. In sum, the interest rates are

rDHH = (1− λ)uH + λθ + e (24)

rDHL = uL

rDLb = (1− λ)uL + e. (25)

Following the same logic, interest rates for the ON-D scheme are given by (24)

and (25). Thus, the bank can charge higher interest rates with commitment to

punishment upon default, so the expected seller profit is lower with commitment:

SOFF−D = q2λuHq(1− q)λθ + (1− q)λuL − e(q2 + 1− q)

SON−D = qλuH + (1− q)λuL − e
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Since the ability to commit does not affect expected payoffs when sales are set-

tled in cash (the bank learns nothing upon default and thus does not lend),

they are still given by Equations (6) and (7). As before, it readily follows that

min{SS
OFF−D, S

P
OFF−C} > SOFF−D, so deposits are never used to settle offline

sales. Because of the higher interest rates charged in the ON-D scheme under

bank commitment, the seller prefers to use the OFF-C scheme for a larger range

of parameters. However, the qualitative results are unchanged:

Proposition 7. (Equilibrium with commitment to punish upon default.)

1. For (1−q)(θ−1) < λ(θ−uL), the bank offers a partial pooling contract. Sellers

distribute online if q(λ− q)(uH − uL) ≥ e, and offline otherwise.

2. For (1 − q)(θ − 1) > λ(θ − uL), the bank offers a separating contract. Sellers

distribute online if q(λ− q)(uH − uL)− qλ(θ − uL) ≥ e, and offline otherwise.

3. All online sales are settled in deposits (by assumption).

B.2 Low adverse selection

In this section we analyze the case of low adverse selection. First, we relax As-

sumption 1 and assume instead that bank lending to all seller types is profitable

at t = 2, q(1− λ)θ > 1. Second, we assume that some adverse selection remains.

In particular, the bank does not lend to a pool of HL-sellers and L-sellers, so

no lending occurs at t = 2 when only HH-sellers are separated out. The cost of

such lending is 1 − q2 (both HL- and L-types are funded) and the expected pay-

off is q(1− q)(1− λ)θ (because only HL-types generate positive output at t = 3).

Rearranging yields q(1−λ)θ < 1+q. Assumption 1′′ summarizes these conditions:

Assumption 1′′. 1
q
< (1− λ)θ < 1 + 1

q
.

This new assumption affects the various participation constraints of in-

vestors. As before, we have to consider a separating and partial pooling. (Below

we will show that the complete pooling contract is again dominated.)

35



Separating pricing scheme. We again have rSHH = rSHL ≡ rSH , so the ICs

are:

uH − rSH + λθ ≥ uH − rSL,

uL − rSH + λθ ≥ uL − rSL,

uL − rSL ≥ uL − rSH + λ,

because the bank grants a continuation loan to each seller reporting as H-type.

Combining ICs again yields λθ ≥ rSH−rSL ≥ λ, as before. The PCs change because

an uninformed bank (in case of absconding) always lends to the seller (because

the bank uses its prior about the seller type and Assumption 1′′ implies that

uninformed lending is profitable):

uH − rSH + λθ ≥ λuH + λθ,

uL − rSH + λθ ≥ λuL + λθ,

uL − rSL ≥ λuL + λ.

Hence, the first and third PC are slack, while PCHL may bind. The feasibility

constraints of enough funds for repayment at t = 1 are uH ≥ rSH , uL ≥ rSH , and

uL ≥ rSL, which are all slack (given the PCs). In sum, the bank’s problem is:

max
rSH ,rSL

q(rSH − 1) + (1− q)(rSL − 1) + q[(1− λ)θ − 1] s.t. IC, PCHL, (26)

because all H-sellers receive a continuation loan at t = 2 under separation, gener-

ating surplus q[(1− λ)θ − 1]. Profit maximization then implies:

rSH = (1− λ)uL and rSL = (1− λ)uL − λ. (27)

The separating contract yields expected bank profits of

BS
OFF−C = (1− λ)uL − 1− (1− q)λ+ q[(1− λ)θ − 1]. (28)
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Partial pooling. We have again rPHL = rPLb ≡ rPL . Given Assumption 1′′,

HL-sellers do not obtain re-financing when pooled with L-sellers, so the ICs read:

uH − rPHH + λθ ≥ uH − rPL ,

uL − rPL ≥ uL − rPHH + λθ,

uL − rPL ≥ uL − rPHH + λ,

because receiving continuation finance allows the HL-type to abscond with future

production (worth λθ), while the L-type can abscond with the loan (worth λ).

The first two constraints yield rPHH = rPL + λθ and the third constraint is slack.

The PCs under partial pooling change to

uH − rPHH + λθ ≥ λuH + λθ,

uL − rPL ≥ λuL + λθ,

uL − rPL ≥ λuL + λ,

because the bank learns nothing upon seller default, uses its prior, and it refinances

all sellers of unknown type by Assumption 1′′ (first inequality). In contrast, when

the seller pays back rL, the bank infers that the meeting is either Lb or HL and,

thus, the bank does not refinance seller by Assumption 1′′ (second inequality).

Using the IC, one can see that the first and third PC are slack, while PCHL

may bind. Moreover, both feasibility constraints are slack, uH ≥ rPHH and uL ≥ rPL .

Taken together, the bank’s problem is

max
rPHH ,rPL

q2(rPHH − 1) + (1− q2)(rPL − 1) + q2[(1− λ)θ − 1] s.t. IC, PCHL, (29)

where only HH-types receive continuation finance. Profit maximization yields

rPHH = (1− λ)uL and rPL = (1− λ)uL − λθ. (30)
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Thus, expected bank profits under partial pooling is

BP
OFF−C = (1− λ)uL − 1 + q2(θ − 1)− λθ. (31)

For completeness, note that the complete pooling contract offers an interest rate

r̄ = (1− λ)uL and yields B̄ = (1− λ)uL − 1 + q(1− λ)θ − 1, with B̄ < BS
OFF−C .

Comparing separation to partial pooling, we have BS > BP as q[(1− λ)θ −

1] > 0 > λ[1 − (1 + q)θ], so the bank always chooses separation. Intuitively, the

bank can charge higher rates and finances more H-sellers at t = 2 under separation.

Finally, we describe the seller’s choice of the trading scheme. Her expected

payoff under ON-D is unchanged and the expected payoff under OFF-C is:

SSEP
OFF−C = q2(uH − rSH + λθ) + q(1− q)(uL − rSH + λθ) + (1− q)(uL − rSL)

= q2[λuH + (1− λ)(uH − uL)] + (1− q2)λuL + λ[1 + q(θ − 1)], (32)

where the first two terms are standard and the final term is the additional surplus

the seller receives because the bank extends continuation finance when uninformed.

Thus, the seller chooses ON-D whenever

q(λ− q)(uH − uL) ≥ e− qλθ + λ[q(θ − 1) + 1]. (33)

The following proposition summarizes.

Proposition 8. (Equilibrium with weak adverse selection.)

1. The bank always offers a separating contract in the OFF-C scheme. Sellers

distribute online if q(λ − q)(uH − uL) ≥ e − qλθ + λ[q(θ − 1) + 1], and offline

otherwise.

2. All online sales are settled in deposits (by assumption).

We can now study how introducing CBDC affects the equilibrium when the

level of adverse selection is low.
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Since there are only two types of matches with online sales, the bank’s choice

under the ON-CBDC scheme is either a separating or a pooling pricing scheme

that we analyze in turn, starting with the pooling case.

Pooling pricing scheme. The bank could offer a pooling pricing scheme

and refinance all sellers. Then the PC of the L-sellers is binding and it implies

that the interest rate is rP = (1− λ)uL. The Banks’ profit under pooling is

BP
CBDC = (1− λ)uL − 1 + q(1− λ)θ − 1

Separating pricing scheme. Since sellers trade online, there are only H

and L match. Hence the participation constraints (PCs) are (separating)

uH − rSH + λθ ≥ λuH + λθ,

uL − rSL ≥ λuL + λ

because the bank does not learn the seller’s type upon absconding at t = 1. The

incentive compatibility constraints (IC) are

uH − rSH + λθ ≥ uH − rSL

uL − rSL ≥ uL − rSH + λ,

It is tedious but routine to show that there are only two cases: the PC of L-

sellers always binds, and either the PC of H-sellers binds (when λ(θ − 1) ≥ (1 −

λ) (uH − uL) ≥ 0) or the IC of H-sellers binds (when (1−λ) (uH − uL) ≥ λ(θ−1)).

If the PC of H-sellers binds, the interest rates are

rSH = (1− λ)uH

rSL = (1− λ)uL − λ
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while if the IC of H-sellers binds, the interest rates are

rSH = rSL + λθ = (1− λ)uL + λ(θ − 1).

Next we analyze each case in turn.

B.2.1 Case 1: λ(θ − 1) ≥ (1− λ) (uH − uL)

In this case, the PC of H-sellers binds, and the interest rates are

rSH = (1− λ)uH ,

rSL = (1− λ)uL − λ.

Then seller’s expected payoff is

SCBDC
ON = q

[
uH − rSH + λθ

]
+ (1− q)

[
uL − rSL

]
= qλuH + (1− q)λuL + qλ(θ − 1) + λ

and the bank’s expected profits are

BS
ON−CBDC = q

[
rSH + (1− λ)θ − 1

]
+ (1− q)rSL − 1

= (1− λ)uL + q(1− λ)(uH − uL) + q(θ − 1)(1− λ)− 1− λ

Finally, we describe the seller’s choice of the trading scheme. Her expected under

OFF-CBDC is the same as with OFF-Cash that we have computed in Appendix

B2 (the bank always use separating with low adverse selection). Hence, sell-

ers prefer CBDC online (with separating) to CBDC offline whenever λ > q. It

is straightforward to show that the bank always prefers the separating pricing

scheme.
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B.2.2 Case 2: λ(θ − 1) < (1− λ) (uH − uL)

In this case, the PC of H-sellers binds, and the interest rates are

rSH = (1− λ)uL + λ(θ − 1)

rSL = (1− λ)uL − λ

The seller’s and bank’s expected payoff are respectively

SCBDC
ON = q[λuH + (1− λ)(uH − uL)] + (1− q)λuL + λ

BS
ON−CBDC = (1− λ)uL + q(θ − 1)− λ− 1

and sellers prefer CBDC online (with separating) to CBDC offline whenever

(1− q)(uH − uL) > λ(θ − 1).

The bank prefers pooling over separating for ON-CBDC whenever q+λ−qλθ > 1.

Sellers’ payoff under ON-CBDC-pooling is

SPooling
CBDC = q(uH − rP + λθ) + (1− q)(uL − rP + λ)

= q(uH − uL) + λuL + qλθ + (1− q)λ

and we can show sellers always prefer using CBDC online (with pooling) to trading

offline with CBDC. The following Propositioni summarizes our results.

Proposition 9. Equilibrium with CBDC and weak adverse selection.

1. When λ(θ− 1) ≥ (1−λ) (uH − uL) the bank always uses a separating contract

in the ON-CBDC scheme . Sellers trade online iff λ > q and offline otherwise.

2. When λ(θ−1) < (1−λ) (uH − uL), the bank uses a pooling contract ON-CBDC

whenever q + λ − qλθ > 1 and a separating contract otherwise. If the bank uses

a pooling contract, sellers always trade online. When the bank uses a separating

contract ON-CBDC, sellers trade online iff (1− q)(uH − uL) > λ(θ − 1).
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B.3 A more informed platform

In this section we relax the assumption that payment tokens are the only source

of information for the platform. Instead, we assume that the platform receives

a perfect signal about the seller’s type with probability ξ < 1, and it remains

uninformed with probability 1 − ξ (so the main text corresponds to ξ = 0). To

simplify the exposition, we assume that the bank observes whether the platform

has received a signal. Otherwise, solving for the equilibrium would be considerably

more complex—without providing more economic insight.

B.3.1 Lending market competition

Settlement with CBDC. Suppose that sellers settle with CBDC. If the bank

chooses to become informed through a separating contract, it will compete with

the platform with probability ξ, and act as a monopolist otherwise. Accordingly,

this allows H-sellers to reap an expected surplus of sξθ, where

sξ ≡ ξs+ (1− ξ)λ ∈ [λ, s). (34)

Thus, the separating contract has to satisfy the following ICs

uH − rH + sξθ ≥ uH − rL + ξλθ

uL − rL+ ≥ uL − rH + λ,

which implies (sξ− ξλ)θ ≥ rH −rL ≥ λ. L-sellers’ PC again yields rL = (1−λ)uL.

To keep the exposition focused, we henceforth assume that a separating contract is

feasible, i.e. (sξ−ξλ)θ > λ, which holds for a small enough ξ. Profit-maximization

implies

rH = rL + (sξ − ξλ)θ,

because the feasibility constraint of the H-seller is slack for any value of ξ by the

stated lower bound assumption on uH (just below Assumption 2). Note that a
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pooling contract would yield lower bank profits because it prevents the bank from

charging higher interest rates from from H-sellers and extract the continuation

surplus, so the bank prefers separation. Thus, the expected surplus of the sellers

under ON-CBDC is

SC,AMIP
ON−CBDC = q[λuH + (1− λ)(uH − uL) + ξλθ] + (1− q)λuL,

where the existence of a more informed platform (AMIP) sometimes generates

future competition in the lending market and, thus, additional surplus ξλθ to the

seller. Thus, SC,AMIP
ON−CBDC = SC

ON−CBDC + qξλθ. In other words, the existence of

the platform limits the surplus the bank can extract by providing an alternative

source of financing for the second loan. Anything beyond what sellers can obtain

from a monopoly platform (ξλθ) is appropriated by the bank. Note that we have

SC,AMIP
ON−CBDC = SON−CBDC when ξ = 0, which corresponds to the main text.

As ξ → 1, the informational value of tokens diminishes, so SC,AMIP
ON−CBDC →

SC
ON−T . Notice that SC,AMIP

ON−T = SC
ON−T , whereby the platform is perfectly in-

formed when tokens are used independently of what the platform knows without.

Accordingly, sellers prefer tokens to CBDC whenever ξ < 1.

Settlement with bank deposits. Next, consider the case where sellers

opt for deposits as means of payments. With probability ξ, the bank and the

platform are informed, leading to perfect competition. By contrast, the bank is a

monopolist with probability 1− ξ. Thus, sellers earn

SC,AMIP
ON−D = qλuH + (1− q)λuL − (e− qsξθ),

and so sellers would prefer tokens over deposits whenever

q(1− λ)(uH − uL) > q(sξ − λ)θ − e. (35)

The LHS of (35) is always positive, so a sufficient condition for the above inequality

to hold is that the RHS is non-positive. Since e ≥ qλθ by Assumption 3, this is
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always the case for

ξ ≤ λ

s− λ
. (36)

B.3.2 Platform innovation

Now consider the case of platform innovation. When sales are settled with tokens,

the seller does not learn about the new platform, and the resulting payoff is the

same as without the platform, so SPC,AMIP
ON−T = SC,AMIP

ON−T = SC
ON−T .

When CBDC is used instead, the seller does learn about the new platform.

Substituting expected productivity θ̃ into the payoffs from the previous subsection:

SPC,AMIP
ON−CBDC = q

[
λuH + (1− λ)(uH − uL) + ξλθ̃

]
+ (1− q)λuL.

Sellers thus prefer tokens to CBDC whenever SPC,AMIP
ON−T > SPC

ON−CBDC , or ξ ≤ θ
θ̃
.

The use of bank deposits also enables sellers to learn about the entrant.

Sellers obtain

SPC
ON−D = qλuH + (1− q)λuL − (e− qs̃ξθ̃),

where s̃ = 1 − θ̃−1 and s̃ξ = ξs̃ + (1 − ξ)λ. Accordingly, tokens are preferred to

deposits when

q(1− λ)(uH − uL) > q(s̃ξθ̃ − λθ)− e

The LHS is always positive, so this condition is satisfied if the RHS is non-positive.

Since e ≥ qλθ by assumption, this is always the case for 2λθ ≥ s̃ξθ̃, or

ξ ≤ 2λθ − λθ̃

(s̃− λ)θ̃
. (37)

Finally, a CBDC with data sharing leads to the same payoffs as in the main

text. Hence it would be the payment instrument chosen by sellers, i.e. CBDC

with data-sharing is always preferred over tokens.
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