1

Cashless Payment and Financial Inclusion

Shumiao Ouyang

Department of Economics and Bendheim Center for Finance, Princeton University

CB&DC Job Market Candidate Virtual Workshop October 2022

Introduction	Data and Identification	IV Analysis	Conclusion
●00	0000000	00000000	O
	a set of the set of th		

• Hard to extend credit access to the underprivileged

Introduction	Data and Identification	IV Analysis	Conclusion
●00	0000000	0000000	O

- Hard to extend credit access to the underprivileged
- BigTech credit is booming globally and overtaking FinTech credit (Cornelli et al., 2021)

- Hard to extend credit access to the underprivileged
- BigTech credit is booming globally and overtaking FinTech credit (Cornelli et al., 2021)
- Mobile cashless payment provided by BigTech firms
 - Naturally combines important technological advancements
 - Has accelerated the shift from cash to cashless economy

- Hard to extend credit access to the underprivileged
- BigTech credit is booming globally and overtaking FinTech credit (Cornelli et al., 2021)
- Mobile cashless payment provided by BigTech firms
 - Naturally combines important technological advancements
 - Has accelerated the shift from cash to cashless economy

Research Question

Has cashless payment facilitated lending to the traditionally underserved? If so, how?

Introduction ○●○	Data and Iden		IV Analysis 0000000	Conclusion O
	 	 _		

Hard to Estimate Effects of Cashless Payment on Credit

Introduction	Data and Identification	IV Analysis	Conclusion
0●0	0000000	00000000	0
Hard to Estimate	Effects of Cashless Payn	nent on Credit	

• Requires an exogenous shock on the cashless payment activity

Hard to Estimate Effects of Cashless Payment on Credit

- Requires an exogenous shock on the cashless payment activity
- Requires detailed individual-level data on payment, credit, and so on

Hard to Estimate Effects of Cashless Payment on Credit

- Requires an exogenous shock on the cashless payment activity
- Requires detailed individual-level data on payment, credit, and so on
- A natural experiment + rich administrative data from Alipay

Introduction	
000	

IV Analysis 00000000

The Main Findings

Introduction	Data and Identification	IV Analysis	Conclusion
000	0000000	0000000	O
The Main Fin	dings		

- Cashless payment flow facilitates credit provision and take-up
 - $\,\circ\,$ Use in-person payment in a month \rightarrow likelihood of credit access $\uparrow\,56.3\%$
 - $\circ~$ In-person payment amount $\uparrow 1\% \rightarrow$ credit line $\uparrow 0.41\%$

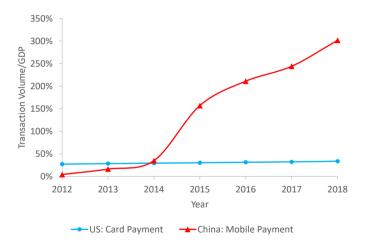
Introduction	Data and Identification	IV Analysis	Conclusion
00●		00000000	O
The Main Finding	S		

- Cashless payment flow facilitates credit provision and take-up
 - $\,\circ\,$ Use in-person payment in a month $\rightarrow\,$ likelihood of credit access $\uparrow\,56.3\%$
 - $\circ~$ In-person payment amount $\uparrow 1\% \rightarrow$ credit line $\uparrow 0.41\%$
- BigTech takes advantage of information in the payment flow
 - Beyond what is in credit usage, repayment, and assets under management (AUM)

Introduction	Data and Identification	IV Analysis	Conclusion
00●		0000000	O
The Main Finding	· C		

- Cashless payment flow facilitates credit provision and take-up
 - $\,\circ\,$ Use in-person payment in a month \rightarrow likelihood of credit access $\uparrow\,56.3\%$
 - $\,\circ\,$ In-person payment amount $\uparrow\,1\%$ \rightarrow credit line \uparrow 0.41\%
- BigTech takes advantage of information in the payment flow
 - Beyond what is in credit usage, repayment, and assets under management (AUM)
 - Information value of payment data
 - Credit line **† 57.7%** (2,088 CNY)
 - Annual consumer welfare [↑] 151.2 CNY per capita
 - Annual lender profit [^] 62.4 CNY per capita

Introduction	Data and Identification	IV Analysis	Conclusion
00●		0000000	O
The Main Finding	75		


- Cashless payment flow facilitates credit provision and take-up
 - $\,\circ\,$ Use in-person payment in a month \rightarrow likelihood of credit access $\uparrow\,56.3\%$
 - $\,\circ\,$ In-person payment amount $\uparrow\,1\%$ \rightarrow credit line \uparrow 0.41\%
- BigTech takes advantage of information in the payment flow
 - Beyond what is in credit usage, repayment, and assets under management (AUM)
 - Information value of payment data
 - Credit line **† 57.7%** (2,088 CNY)
 - Annual consumer welfare [↑] 151.2 CNY per capita
 - Annual lender profit [^] 62.4 CNY per capita
- The financially underserved benefit more from it
 - Stronger credit provision effects on the less educated and older
 - More credit provision also leads to higher consumer welfare

Data and Identification •000000 IV Analysis 00000000 Conclusion 0

Data and Identification

Introduction coo
Data and Identification oocococo
Data and Identification oocococo
Conclusion oocococo
Conclusion oocococo
Conclusion

Observation 1: Rise of Cashless Payments

Source: US Federal Reserve, PBOC, World Bank

Types of Mobie Payments Mobie Payments Penetration across Countries

Introduction	Data and Identification	IV Analysis	Conclusion
000	00●00000	0000000	O

- Alipay: the largest mobile wallet with more than 1 billion users Alipay's Business Structure
- Huabei credit line: the largest consumer finance product Huabei's Product Features

Data and Identification	IV Analysis	Conclusion
0000000	00000000	O

- Alipay: the largest mobile wallet with more than 1 billion users Alipay's Business Structure
- Huabei credit line: the largest consumer finance product Huabei's Product Features
- In a representative sample of Alipay users
 - 72% have access to Huabei credit line

Data and Identification	IV Analysis	Conclusion
0000000	00000000	O

- Alipay: the largest mobile wallet with more than 1 billion users Alipay's Business Structure
- Huabei credit line: the largest consumer finance product Huabei's Product Features
- In a representative sample of Alipay users
 - 72% have access to Huabei credit line
- Among those with Huabei access
 - \circ 95% have used the credit, with an average monthly usage of 533 CNY (\sim 80 USD)

Data and Identification	Conclusion
000000	
	,

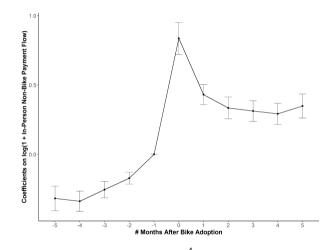
- Alipay: the largest mobile wallet with more than 1 billion users Alipay's Business Structure
- Huabei credit line: the largest consumer finance product Huabei's Product Features
- In a representative sample of Alipay users
 - 72% have access to Huabei credit line
- Among those with Huabei access
 - $\,\circ\,$ 95% have used the credit, with an average monthly usage of 533 CNY (\sim 80 USD)
- Even among those who do not have a credit card on file

Introduction	Data and Identification	IV Analysis	Conclusion
000	000●0000	0000000	O
Dete			

Data

- Representative Random Sample from Population
 - $\circ~41,485$ Alipay users with in-person cashless payment activities
 - o Individual-level monthly panel data with detailed information
 - Personal characteristics
 - Payment, credit, investment, and other digital footprints

Introduction	Data and Identification	IV Analysis	Conclusion
000	000●0000	0000000	O
Data			


Data

- Representative Random Sample from Population
 - o 41,485 Alipay users with in-person cashless payment activities
 - o Individual-level monthly panel data with detailed information
 - Personal characteristics
 - Payment, credit, investment, and other digital footprints
- Sample Period
 - From May 2017 to September 2020
 - · Both mobile payment and bike-sharing industries develop fast

Alipay and Bike-Sharing Industry Alipay Registration and Bike Adoption

log(1 + ln-Person Non-Bike Payment Flow) $_{i,t} = \alpha_0 + \sum_{\tau=-5}^{\tau} \beta_{\tau} \cdot \mathbb{1}(t = \tau) + \beta_5 \cdot \mathbb{1}(t \ge 5) + \delta_i + \mu_t + \varepsilon_{i,t}$

Introduction	Data and Identification	IV Analysis	Conclusion
000	000000●0	00000000	O
The Relevance C	ondition		

	log(1 + In-Person Payment Flow) _{i,t}			
	(1)	(2)	(3)	
log(Bike Placement) _{c,t}	0.041***	0.011		
	(0.010)	(0.009)		
Bike User _i \times log(Bike Placement) _{c,t}		0.103***		
		(0.017)		
After First Bike Usage _{i.t}			-0.123	
.,-			(0.161)	
After First Bike $Usage_{i,t} \times log(Bike Placement)_{c,t}$			0.049***	
			(0.014)	
Individual FE	YES	YES	YES	
Year-Month FE	YES	YES	-	
$City imes Year ext{-Month} FE$	NO	NO	YES	
Clustered by City and Year-Month	YES	YES	YES	
Sample	Full Sample	Full Sample	Bike Users	
Observations	1,238,309	1,238,309	435,872	
Adjusted R^2	0.551	0.552	0.490	
Note:	*n < 0.1	· **n < 0.05· 3	*** n < 0.01	

Note:

*p < 0.1; **p < 0.05; ***p < 0.01

The Exclusion Restriction

	$log(1 + Credit Line)_{i,t}$		
	(1)	(2)	(3)
$log(Bike Placement)_{c,t}$	0.027***	0.009	
	(0.008)	(0.010)	
Bike User _i × log (Bike Placement) _{c.t}	. ,	0.060**	
, , ,		(0.023)	
After First Bike Usage _{i.t}			-0.231
.,-			(0.157)
After First Bike Usage _{<i>i</i>,t × <i>log</i>(Bike Placement)_{<i>c</i>,t}}			0.070***
.,,			(0.013)
Individual FE	YES	YES	YES
Year-Month FE	YES	YES	-
City $ imes$ Year-Month FE	NO	NO	YES
Clustered by City and Year-Month	YES	YES	YES
Sample	Full Sample	Full Sample	Bike Users
Observations	1,238,309	1,238,309	435,872
Adjusted R ²	0.800	0.800	0.774
Note:	*p < 0.1	; **p < 0.05; '	***p < 0.01

Bike-Related Characteristics

Characteristics and Exclusion Restriction

tion Bike Sharing Background

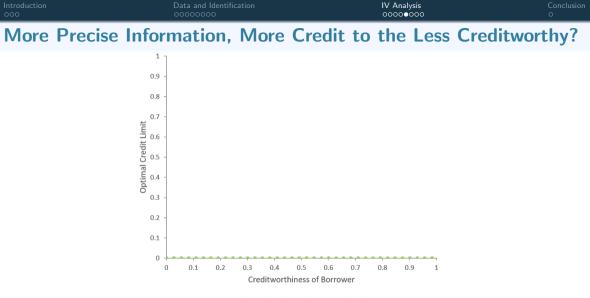
Bike Usage and Exclusion Restriction

Data and Identification	IV Analysis	Conclusion
	0000000	

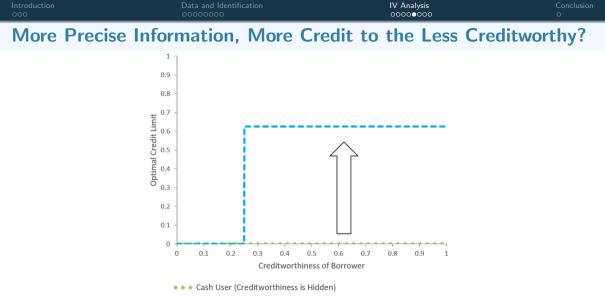
IV Analysis

Introduction	Data and Identification	IV Analysis	Conclusion
000		0000000	O
In-Person	Payment Facilitates Credit	Provision	

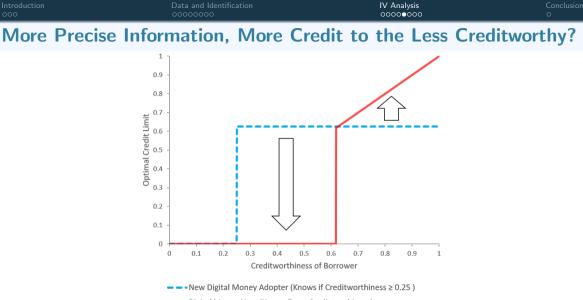
		Credit Access _i	t	log(Credit Line) _{i.t}) _{i,t}
	(1)	(2)	(3)	(4)	(5)	(6)
	Panel A. T	wo-Stage Lea	st Squares			
Measure of In-Person Payment $Flow_{i,t}$	0.086***	0.563***	0.087**	0.281***	2.033**	0.409***
	(0.024)	(0.175)	(0.043)	(0.085)	(0.766)	(0.132)
Panel B. F	irst Stage for	Measure of In-	Person Payme	nt Flow _{i,t}		
log(Bike Placement) _{c,t}	0.041***	0.006***	0.030***	0.043***	0.006***	0.024***
	(0.010)	(0.002)	(0.009)	(0.012)	(0.002)	(0.008)
F-Statistic	15.5	10.8	11.2	13.9	10.6	9.1
Adjusted R ²	0.551	0.465	0.432	0.527	0.439	0.401
	Panel C.	Ordinary Least	Squares			
Measure of In-Person Payment $Flow_{i,t}$	0.010***	0.062***	0.007***	0.022***	0.072***	0.029***
<i>.</i>	(0.001)	(0.007)	(0.001)	(0.003)	(0.023)	(0.002)
Adjusted R ²	0.740	0.741	0.700	0.836	0.835	0.841
Form of the IPF Measure	log(1+x)	$\mathbb{1}(x > 0)$	log(x)	log(1+x)	$\mathbb{1}(x > 0)$	log(x)
Individual FE	YES	YES	YES	YES	YES	YES
Year-Month FE	YES	YES	YES	YES	YES	YES
Clustered by City and Year-Month	YES	YES	YES	YES	YES	YES
Sample	Full Sample	Full Sample	Full Sample	Has Credit	Has Credit	Has Credi
Observations	1,238,309	1,238,309	662,010	779,283	779,283	516,570
Note:				*p < 0.1;	**p < 0.05;	***p < 0.0


	Data and Identification			alysis		Conclusior 0
Informa	tion Channel vs. Enforce	ement	Channe	el		
		Credit	Access _{i.t}	log(Cred	lit Line) _{i.t}	
		(1)	(2)	(3)	(4)	
	Panel A. Two-Stage Leas	t Squares - Inf	ormation Char	nnel		
	$log(1 + In-Person Noncredit Payment Flow)_{i,t}$	0.094***	0.095***	0.329***	0.358***	
		(0.024)	(0.026)	(0.103)	(0.124)	
	$log(1 + In-Person Credit Payment Flow)_{i,t}$		-0.005 (0.006)		-0.044 (0.029)	
	Panel B. Two-Stage Least	: Squares - En	· · /	nnel	(0.020)	
	$log(1 + In-Person Payment Flow)_{i,t}$	0.097***	0.098***	0.280***	0.282***	
		(0.025)	(0.026)	(0.085)	(0.086)	
	$log(1 + Assets \ under \ Management)_{i,t}$	-0.005	-0.008	-0.015	-0.026*	
	Whether AUM Include Account Balance	(0.004) NO	(0.005) YES	(0.011) NO	(0.013) YES	
	Individual FE	YES	YES	YES	YES	
	Year-Month FE	YES	YES	YES	YES	
	Clustered by City and Year-Month	YES	YES	YES	YES	
	Sample	Full Sample	Full Sample	Has Credit	Has Credit	
	Observations	1,238,309	1,238,309	779,283	779,283	
	Note:		*p < 0.1;	** <i>p</i> < 0.05;	***p < 0.01	

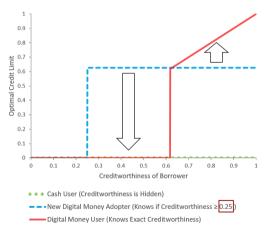
Introduction	Data and Identification	IV Analysis	Conclusion
000	00000000	000●0000	O
In-Person	Payment Increases Credit	: Take-Up	


	Virtual Credit Card Share _{i,t}		Compulsive Spending Share _{i.t}		
In-Person Payment	Online Payment	In-Person Payment	Online Payment		
(1)	(2)	(3)	(4)		
Panel A. Two-Sta	ge Least Squares				
0.094***	0.030***	0.004	0.002		
(0.034)	(0.011)	(0.010)	(0.002)		
First Stage for $log(1$	+ In-Person Payme	ent Flow) _{i,t}			
0.028***	0.064***	0.028***	0.064***		
(0.009)	(0.014)	(0.009)	(0.014)		
11.0	22.7	11.0	22.7		
0.434	0.505	0.434	0.505		
YES	YES	YES	YES		
YES	YES	YES	YES		
YES	YES	YES	YES		
662,010	806,938	662,010	806,938		
	(1) Panel A. Two-Sta 0.094*** (0.034) First Stage for <i>log</i> (1 0.028*** (0.009) 11.0 0.434 YES YES YES YES	(1) (2) Panel A. Two-Stage Least Squares 0.094*** 0.030*** (0.034) (0.011) First Stage for log(1 + In-Person Payme 0.028*** 0.064*** (0.009) (0.014) 11.0 22.7 0.434 0.505 YES YES YES YES YES YES YES YES YES YES	(1) (2) (3) Panel A. Two-Stage Least Squares 0.094*** 0.030*** 0.004 (0.034) (0.011) (0.010) First Stage for log(1 + In-Person Payment Flow) _{i,t} 0.028*** 0.064*** 0.028*** (0.009) (0.014) (0.009) 11.0 22.7 11.0 0.434 0.505 0.434 YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES		

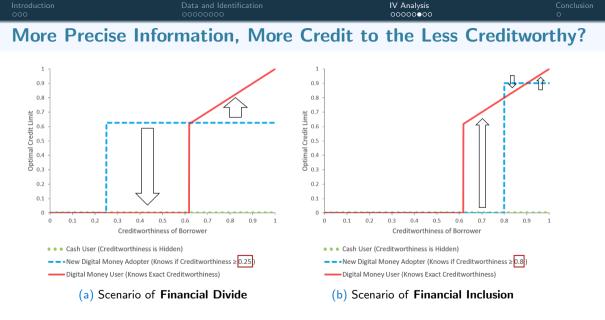
Note:


*p < 0.1; **p < 0.05; *** $\overline{p < 0.01}$

• • • Cash User (Creditworthiness is Hidden)



- - • New Digital Money Adopter (Knows if Creditworthiness ≥ 0.25)



Digital Money User (Knows Exact Creditworthiness)

(a) Scenario of Financial Divide

Data and Identification	IV Analysis	Conclusion
	00000000	

The Financially Underserved Segments

	Financial Service Usage			Financial Literacy		
	# Debit Cards;	it Cards; $log(1 + Max. AUM)_i \# Investment I$	# Investment Months;	nths; Pay with Real Name;	Use Own Account;	Complete Profile;
	(1)	(2)	(3)	(4)	(5)	(6)
Low Education _i	-0.694***	-1.078***	-3.076***	-0.119***	-0.087***	-0.122***
	(0.046)	(0.075)	(0.282)	(0.006)	(0.008)	(0.008)
Older than Median _i	-0.863***	-0.671***	-2.512***	-0.191***	-0.223***	-0.089***
	(0.025)	(0.045)	(0.141)	(0.006)	(0.009)	(0.005)
Gender FE	YES	YES	YES	YES	YES	YES
City FE	YES	YES	YES	YES	YES	YES
Year-Month FE	YES	YES	YES	YES	YES	YES
Clustered by City	YES	YES	YES	YES	YES	YES
Observations	39,459	39,459	39,459	39,459	39,459	39,459
Adjusted R ²	0.081	0.052	0.036	0.081	0.101	0.046

Note:

*p < 0.1; **p < 0.05; ***p < 0.01

Introduction 000	Data and Iden 0000000	ntification		IV Analysis 0000000●		Conclusi 0
Finan	cial Inclusion: The	Less Edu	cated Ge	t More (Credit	
		Credit	Access _{i t}	log(Cre	dit Line) _{i.t}	
		(1)	(2)	(3)	(4)	
		^D anel A. Two-Sta	ge Least Squares			
	$log(1 + In-Person Payment Flow)_{i,t}$	0.093***	0.024	0.334***	0.038	
		(0.027)	(0.044)	(0.109)	(0.073)	
	Panel B. Firs	t Stage for <i>log</i> (1	+ In-Person Payme	ent Flow) _{i,t}		
	$log(Bike Placement)_{c,t}$	0.039***	0.043***	0.039***	0.053***	
		(0.010)	(0.013)	(0.011)	(0.014)	
	F-Statistic	13.7	10.9	11.6	14.2	
	Adjusted R ²	0.554	0.563	0.528	0.483	
	Individual FE	YES	YES	YES	YES	
	Year-Month FE	YES	YES	YES	YES	
	Clustered by City and Year-Month	YES	YES	YES	YES	
	Sample	Full Sample	Full Sample	Has Credit	Has Credit	
	Subsample	Low Education	High Education	Low Education	High Education	
	Observations	1,065,769	171,938	657,878	121,194	
	Note:		ĸ	*p < 0.1; **p <	0.05; *** <i>p</i> < 0.01	

Introduction	Data and Identification	IV Analysis	Conclusion
000	0000000	00000000	•
Conclusion			

Introduction	Data and Identification	IV Analysis	Conclusion
000	00000000	00000000	•
Conclusion			

- Open questions (Berg, Fuster and Puri, 2021)
 - Is information from payment flows a causal factor behind credit expansion?
 - Does it benefit customers previously underserved by traditional financial institutions?

Introduction	Data and Identification	IV Analysis	Conclusion
000		00000000	•
Conclusion			

- Open questions (Berg, Fuster and Puri, 2021)
 - Is information from payment flows a causal factor behind credit expansion?
 - Does it benefit customers previously underserved by traditional financial institutions?
- This paper argue that answer to both questions is YES
 - With unique data and a new identification strategy
 - The first paper showing that payment information fuels BigTech credit to households

Introduction	Data and Identification	IV Analysis	Conclusion
000	00000000	00000000	•
Conclusion			

- Open questions (Berg, Fuster and Puri, 2021)
 - Is information from payment flows a causal factor behind credit expansion?
 - Does it benefit customers previously underserved by traditional financial institutions?
- This paper argue that answer to both questions is YES
 - With unique data and a new identification strategy
 - $\circ~$ The first paper showing that payment information fuels BigTech credit to households
- Policy implications
 - Mobile payment provides opportunities for sustainable and inclusive finance

Different Types of Mobile Payments

(a) *M-Pesa* and Mobile Phone

(b) Apple Pay, Card, and Phone

(c) Alipay and Smart Phone

Go Back

Mobile Payment Penetration across Countries

(a) 2021

Source: Statista Digital Market Outlook, World Bank

Go Back

Mobile Payment Penetration across Countries

(a) 2021

Go Back

Source: Statista Digital Market Outlook, World Bank

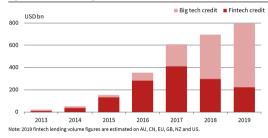
(b) 2019

Alipay: the "All-in-One" Approach to Mobile Payment

Source: IPO Prospectus of Ant Group, 2020

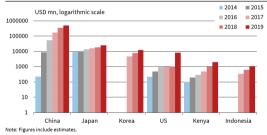
Features of Alipay's Huabei Credit Line

- No active application required
 - Qualification status and credit line instantly available
- No price discrimination
 - 0.05% daily rate (18.25% annually)
 - Interest-free period of up to 40 days
- Excellent risk management
 - Delinquency rate as of June 2019
 - Huabei: 1.16%
 - Credit cards issued by public banks in China: 1.21% to 2.49%



BigTech Credit is Booming Globally

Figure 1


Big Tech Credit Is Overtaking Fintech Credit

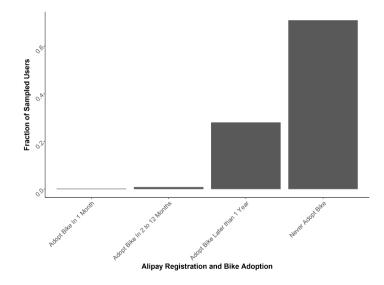
(a) BigTech and Fintech Credit Source: Cornelli et al. (2020), CESifo Forum

Figure 2

Big Tech Credit Is Booming in Asia, the United States and Africa

(b) Global Boom in BigTech Credit

Alipay and Dockless Bike-Sharing Service


- Fast growing bike-sharing industry
- Alipay-bundled shared bikes
 - Investment \geq 3.5 billion dollars
 - Strategic partnership
 - Unlock bike directly with Alipay

Source: IPO Prospectus of Hello Inc, 2021; iResearch Report

Alipay Registration and Shared-Bike Adoption

Bike-Related Personal Characteristics

		Bike User;	
	(1)	(2)	(3)
Low Education;	-0.173***	-0.109***	-0.065***
	(0.009)	(0.010)	(0.009)
Older than Median _i	-0.095***	-0.110***	-0.096***
	(0.005)	(0.005)	(0.004)
Early Alipay User _i	-0.129***	-0.113***	-0.030***
	(0.007)	(0.006)	(0.005)
Malei	0.049***	0.059***	0.045***
	(0.004)	(0.004)	(0.004)
Pay with Real Name;	0.088***	0.081***	0.012**
	(0.006)	(0.005)	(0.005)
Use Own Account _i	0.076***	0.071***	0.033***
	(0.006)	(0.005)	(0.005)
Complete Profile;	0.012*	0.001	-0.012*
	(0.007)	(0.006)	(0.006)
Constant	0.421***		
	(0.013)		
City FE	NO	YES	YES
Occupation FE	NO	YES	YES
Controls Financial Activity Measures	NO	NO	YES
Clustered by City	YES	YES	YES
Observations	39,459	39,459	39,459
Adjusted R ²	0.123	0.178	0.260
Note:	*p < 0.1; *	** <i>p</i> < 0.05; *	***p < 0.01

Bike Usage, Personal Characteristics, and Exclusion Restriction

	Dependent Variable					
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A. Ordinary Le	ast Squares with I	Dependent Variable: <i>Ic</i>	$g(1 + {\sf In-Person} \ {\sf Pay})$	ment Flow);	t	
pg(Bike Placement) _{c,t}	-0.022	0.008	0.029**	0.021**	-0.013	-0.010
	(0.014)	(0.010)	(0.011)	(0.009)	(0.015)	(0.010)
Bike User _i × log(Bike Placement) _{c,t}	0.139***	0.110***	0.092***	0.099***	0.057**	0.139***
	(0.029)	(0.018)	(0.017)	(0.021)	(0.025)	(0.029)
haracteristic Measure _i \times log(Bike Placement) _{c,t}	0.036**	0.004	-0.038***	-0.023**	0.033*	0.036**
	(0.017)	(0.013)	(0.012)	(0.008)	(0.019)	(0.017)
Bike User _i × Characteristic Measure _i × $log(Bike Placement)_{c,t}$	-0.040	-0.017	0.009	0.009	0.046**	-0.045
	(0.031)	(0.018)	(0.025)	(0.020)	(0.023)	(0.031)
Adjusted R ²	0.552	0.552	0.552	0.552	0.552	0.552
Panel B. Ordin	ary Least Squares	with Dependent Varia	ble: $log(1 + Credit)$	Line) _{i,t}		
pg(Bike Placement) _{c,t}	0.009	0.014	0.020	0.004	-0.008	0.003
	(0.021)	(0.010)	(0.013)	(0.014)	(0.013)	(0.015)
Bike User _i \times log(Bike Placement) _{c,t}	0.051*	0.053*	0.057*	0.056**	0.049*	0.042**
	(0.030)	(0.026)	(0.029)	(0.025)	(0.029)	(0.020)
haracteristic Measure _i \times log(Bike Placement) _{c,t}	0.0001	-0.011	-0.023	0.008	0.024*	0.012
	(0.026)	(0.018)	(0.025)	(0.012)	(0.014)	(0.014)
Bike User _i × Characteristic Measure _i × $log(Bike Placement)_{c,t}$	0.012	0.016	-0.008	0.007	0.007	0.022
	(0.025)	(0.028)	(0.046)	(0.019)	(0.037)	(0.034)
Adjusted R ²	0.800	0.799	0.800	0.799	0.800	0.800
Personal Characteristic Measure	Low Education;	Older than Median;	Early Alipay User;	Male;	Pay with Real Name;	Use Own Account
ndividual FE	YES	YES	YES	YES	YES	YES
/ear-Month FE	YES	YES	YES	YES	YES	YES
Clustered by City and Year-Month	YES	YES	YES	YES	YES	YES
Observations	1,237,707	1,237,707	1,237,707	1,237,707	1,237,707	1,237,707

Note:

Background of Bike Sharing Service

Low Cost of Usage

- 0.23 USD/first 15 min
- After the first 15min, 0.08 USD/15min
- Unlimited plan: About 3 USD/month

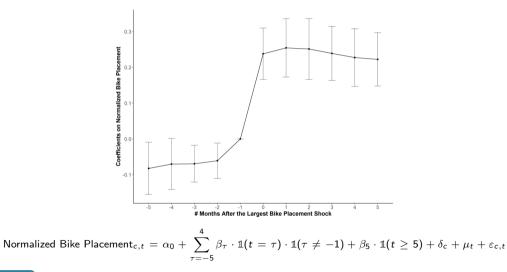
Large User Base

- The size of the user base of shared bikes in China is 260 million as of late 2019
- Over 400 million Hellobike users in 2021

Direct Effects of Bike Usage

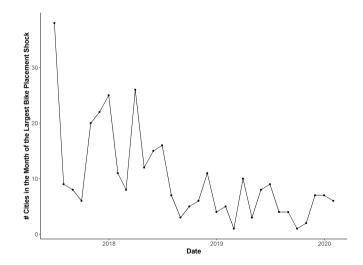
	log(1 + In-Pe	erson Payment Flow) _{i,t}	log(1 + Cr)	edit Line) _{i.t}
	(1)	(2)	(3)	(4)
$log(Bike Placement)_{c,t}$	0.011		0.009	
	(0.009)		(0.010)	
One-Time Bike User _i \times log(Bike Placement) _{c,t}	0.088***	0.072***	0.048**	0.035
	(0.020)	(0.019)	(0.023)	(0.025)
Repeat Bike User _i \times log(Bike Placement) _{c,t}	0.106***	0.078***	0.062**	0.040
	(0.018)	(0.017)	(0.025)	(0.029)
Individual FE	YES	YES	YES	YES
Year-Month FE	YES	-	YES	-
$City imes Year\operatorname{-Month}FE$	NO	YES	NO	YES
Clustered by City and Year-Month	YES	YES	YES	YES
Observations	1,238,309	1,238,309	1,238,309	1,238,309
Adjusted R^2	0.552	0.555	0.800	0.801

Note:


Bike Placement and Local Economy

	$log(GDP)_{c,t}$ (1)	log(GDP per capita) _{c,t} (2)	Fiscal Spending/GDP _{c,t} (3)	Fiscal Income/GDP _{c,t} (4)
$log(Bike Placement)_{c,t}$	0.002 (0.002)	0.000 (0.002)	-0.001 (0.001)	0.000 (0.000)
City FE	YES	YES	YES	YES
Year FE	YES	YES	YES	YES
Clustered by City and Year	YES	YES	YES	YES
Observations	895	775	886	891
Adjusted R ²	0.992	0.979	0.957	0.903
A1 .			* 1 *	*

Note:



Staggered Placement of Shared Bikes

Broad Distribution of Bike-Placement Shock

Why IV Estimate \gg OLS Estimate

- Reason 1: Omitted variables
 - o OLS can have a downward bias due to omitted variables
 - Example: A negative health shock

Explanation with an Econometric Framework

- Reason 2: Non-monotone payment-credit relationship
 - $\circ~$ Below a threshold, payment flow \rightarrow information \rightarrow credit provision
 - $\circ~$ Above a threshold, payment flow \rightarrow over-spending \rightarrow risky \rightarrow less credit provision

Evidence of Non-Monotone Payment-Credit Relationship

OLS and IV Estimates

- An econometric framework with endogeneity Econometric Framework Setup
- OLS Estimate
 - $\circ~$ Assume 0 $<\alpha_1<$ 1, 0 $<\beta_1<$ 1, and $\varepsilon_{i,t}^{\textit{EE}}\perp\varphi_{i,t}$, then

$$\hat{\alpha}_{1}^{OLS} = \frac{Cov(cl_{i,t}, ipf_{i,t})}{Var(ipf_{i,t})} \\ = \alpha_{1} + \underbrace{\frac{1}{1 - \alpha_{1} \cdot \beta_{1}}}_{+} \cdot \underbrace{[\frac{Var(\delta_{i} + \theta_{t} + \varepsilon_{i,t}^{OV} + \varepsilon_{i,t}^{EE})}{Var(ipf_{i,t})} \cdot \beta_{1}}_{+} + \underbrace{\frac{Cov(\varepsilon_{i,t}^{OV}, \varphi_{i,t})}{Var(ipf_{i,t})}}_{+ \text{ or } -}]$$

• IV Estimate

• Given
$$Cov(ipf_{i,t}, bp_{c,t}) = \frac{1}{1-\alpha_1 \cdot \beta_1} \cdot Cov(\varphi_{i,t}, bp_{c,t}) \neq 0$$

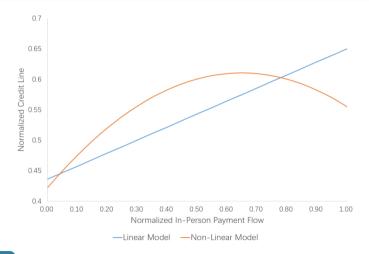
$$\hat{\alpha}_1^{IV} = \frac{Cov(cl_{i,t}, bp_{c,t})}{Cov(ipf_{i,t}, bp_{c,t})} = \alpha_1$$

Econometric Framework Setup

• Three Parties: Lender, Borrower i, Bike-Sharing Company

- Credit Supply: $cl_{i,t} = \alpha_0 + \alpha_1 \cdot ipf_{i,t} + \delta_i + \theta_t + \varepsilon_{i,t}^{OV} + \varepsilon_{i,t}^{EE}$
- In-Person Payment Decision: $ipf_{i,t} = \beta_0 + \beta_1 \cdot cl_{i,t} + \mu_i + \omega_t + \varphi_{i,t}$
- Exogenous Bike Placement Decision: $bp_{c,t}$

Identifying Assumptions


- Both $\varepsilon_{i,t} = \varepsilon_{i,t}^{OV} + \varepsilon_{i,t}^{EE}$ and $\varphi_{i,t}$ are orthogonal to 1, δ_i , θ_t , μ_i , ω_t
- $bp_{c,t}$ is a valid instrument for $ipf_{i,t}$:

-
$$\mathsf{E}[(\varepsilon_{i,t}^{OV} + \varepsilon_{i,t}^{EE}) \cdot bp_{c,t}] = 0$$

-
$$\mathsf{E}[\varphi_{i,t} \cdot bp_{c,t}] \neq 0$$

Non-Monotone Payment-Credit Relationship

Non-Monotone Payment-Credit Relationship: Regression

		Normalized	Credit Line _{i,t}	
	(1)	(2)	(3)	(4)
Normalized In-Person Payment Flow _{i,t}	0.214***	0.581***	0.040***	0.105***
	(0.033)	(0.076)	(0.006)	(0.013)
(Normalized In-Person Payment $Flow_{i,t}$) ²		-0.448***		-0.075***
		(0.064)		(0.009)
Constant	0.436***	0.422***		
	(0.042)	(0.043)		
Individual FE	NO	NO	YES	YES
Year-Month FE	NO	NO	YES	YES
Clustered by City and Year-Month	YES	YES	YES	YES
Observations	1,030,678	1,030,678	1,030,678	1,030,678
Adjusted R ²	0.016	0.022	0.767	0.767
Note:		*p < 0.1; *	*p < 0.05; *	**p < 0.02

Control for City \times Year-Month Fixed Effects

	Credit /	Access _{i,t}	<i>log</i> (Cred	it Line) _{i,t}
	(1)	(2)	(3)	(4)
Panel A.	Two-Stage Le	ast Squares		
$log(1 + In-Person Payment Flow)_{i,t}$	0.115***	0.108***	0.398***	0.418***
	(0.004)	(0.004)	(0.016)	(0.019)
Panel B. First Stage 1	for $log(1 + \ln l)$	Person Paymer	nt Flow) _{i,t}	
Bike User _i \times log(Bike Placement) _{c,t}	0.209***	0.178***	0.166***	0.134***
	(0.008)	(0.008)	(0.007)	(0.007)
F-Statistic	772.9	476.0	503.2	343.0
Adjusted R ²	0.168	0.190	0.147	0.173
Panel C	. Ordinary Lea	st Squares		
$log(1 + In-Person Payment Flow)_{i,t}$	0.054***	0.047***	0.147***	0.121***
	(0.001)	(0.001)	(0.004)	(0.004)
Adjusted R ²	0.193	0.245	0.181	0.363
City \times Year-Month FE	YES	YES	YES	YES
Controls Individual Characteristics	NO	YES	NO	YES
Clustered by City and Year-Month	YES	YES	YES	YES
Sample	Full Sample	Full Sample	Has Credit	Has Credi
Observations	1,238,309	664,727	779,283	440,418
Note:		*n < 0.1	**n < 0.05	***n < 0.0

In-Person Payment Flow and Future Credit Provision

	(Credit Access _{i,}	т	log	g(Credit Line)	i,T
	t+1	t+2	t + 3	t+1	t+2	t+3
	(1)	(2)	(3)	(4)	(5)	(6)
	Panel A.	Two-Stage Le	ast Squares			
$log(1 + In-Person Payment Flow)_{i,t}$	0.088***	0.085***	0.083***	0.250***	0.242***	0.235***
	(0.023)	(0.024)	(0.024)	(0.071)	(0.069)	(0.064)
Panel B	. First Stage f	or $log(1 + In-F$	Person Paymen	t Flow) _{i,t}		
<i>log</i> (Bike Placement) _{c,t}	0.041***	0.042***	0.042***	0.048***	0.048***	0.049***
	(0.011)	(0.011)	(0.011)	(0.012)	(0.013)	(0.013)
F-Statistic	15.4	15.1	15.4	15.0	14.6	15.0
Adjusted R ²	0.552	0.553	0.554	0.523	0.522	0.521
	Panel C	. Ordinary Lea	st Squares			
$log(1 + In-Person Payment Flow)_{i,t}$	0.008***	0.007***	0.006***	0.025***	0.026***	0.027***
	(0.001)	(0.001)	(0.001)	(0.003)	(0.003)	(0.003)
Adjusted R ²	0.743	0.750	0.757	0.837	0.839	0.841
Individual FE	YES	YES	YES	YES	YES	YES
Year-Month FE	YES	YES	YES	YES	YES	YES
Clustered by City and Year-Month	YES	YES	YES	YES	YES	YES
Sample	Full Sample	Full Sample	Full Sample	Has Credit	Has Credit	Has Credi
Observations	1,199,746	1,161,435	1,123,295	775,512	763,560	750,694
Note [.]				*n < 0.1·	**n < 0.05	***n < 0.0

Go Back

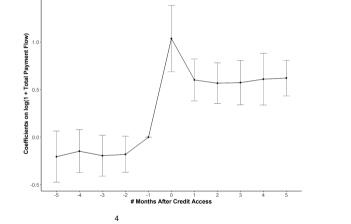
Control for Past In-Person Payment Flow

	(Credit Accessi,	t	log(Credit Line) _{i,t}		
	(1)	(2)	(3)	(4)	(5)	(6)
F	Panel A. Two-S	Stage Least Sq	uares			
$log(1 + In-Person Payment Flow)_{i,t}$	0.139***	0.154***	0.157***	0.388***	0.457***	0.531**
	(0.038)	(0.048)	(0.056)	(0.129)	(0.167)	(0.204)
Panel B. First	Stage for <i>log</i>	(1 + In-Person	Payment Flov	v) _{i,t}		
<i>log</i> (Bike Placement) _{c,t}	0.024***	0.019***	0.016***	0.027***	0.022***	0.018***
	(0.006)	(0.005)	(0.005)	(0.007)	(0.006)	(0.005)
F-Statistic	16.7	14.0	11.0	16.4	14.5	12.3
Adjusted R ²	0.636	0.647	0.651	0.596	0.605	0.608
	Panel C. Ordi	nary Least Squ	iares			
$log(1 + In-Person Payment Flow)_{i,t}$	0.007***	0.006***	0.006***	0.015***	0.012***	0.010***
	(0.001)	(0.001)	(0.001)	(0.002)	(0.002)	(0.002)
Adjusted R ²	0.743	0.751	0.759	0.837	0.840	0.842
Controls $log(1 + In-Person Payment Flow)_{i,t-1}$	YES	YES	YES	YES	YES	YES
Controls $log(1 + In-Person Payment Flow)_{i,t-2}$	NO	YES	YES	NO	YES	YES
Controls $log(1 + In-Person Payment Flow)_{i,t-3}$	NO	NO	YES	NO	NO	YES
Individual FE	YES	YES	YES	YES	YES	YES
Year-Month FE	YES	YES	YES	YES	YES	YES
Clustered by City and Year-Month	YES	YES	YES	YES	YES	YES
Sample	Full Sample	Full Sample	Full Sample	Has Credit	Has Credit	Has Cred
Observations	1,199,825	1,161,573	1,123,548	775,601	763,711	750,940

Go Back

Control for Bike Usage

	Credit	Access _{i,t}	log(Credit Line) _{i.t}	
	(1)	(2)	(3)	(4)
Pa	nel A. Two-Sta	ge Least Squares		
$log(1 + In-Person Payment Flow)_{i,t}$	0.098***	0.097***	0.329***	0.329***
	(0.030)	(0.030)	(0.112)	(0.112)
$log(1 + Measure of Bike Usage)_{i,t}$	-0.034**	-0.028**	-0.112**	-0.094**
	(0.015)	(0.012)	(0.048)	(0.041)
Panel B. First S	Stage for log(1	+ In-Person Payme	ent Flow) _{i,t}	
log(Bike Placement) _{c.t}	0.034***	0.034***	0.036***	0.036***
	(0.010)	(0.010)	(0.011)	(0.011)
$log(1 + Measure of Bike Usage)_{i,t}$	0.497***	0.391***	0.408***	0.324***
	(0.022)	(0.030)	(0.021)	(0.027)
-Statistic	11.2	11.2	10.2	10.2
Adjusted R ²	0.554	0.554	0.530	0.529
P	anel C. Ordinar	y Least Squares		
$log(1 + \text{In-Person Payment Flow})_{i,t}$	0.010***	0.010***	0.021***	0.022***
	(0.001)	(0.001)	(0.003)	(0.003)
$log(1 + Measure of Bike Usage)_{i,t}$	0.010***	0.007***	0.015***	0.007*
	(0.002)	(0.001)	(0.005)	(0.004)
Adjusted R ²	0.740	0.740	0.836	0.836
Measure of Bike Usage	# Bike Rides	Riding Distance	# Bike Rides	Riding Distance
ndividual FE	YES	YES	YES	YES
Year-Month FE	YES	YES	YES	YES
Clustered by City and Year-Month	YES	YES	YES	YES
Sample	Full Sample	Full Sample	Has Credit	Has Credit
Observations	1,238,309	1,238,309	779,283	779,283
Clustered by City and Year-Month Sample	YES Full Sample	YES Full Sample	YES Has Credit 779,283	YES Has Cre



Control for Online Payments

	Credit Access _{i.t}		log(Credit Line) _{i,t}		
	(1)	(2)	(3)	(4)	
	Panel A. Tw	o-Stage Least Squares			
$log(1 + In-Person Payment Flow)_{i,t}$	0.086***	0.085***	0.280***	0.277***	
	(0.023)	(0.023)	(0.085)	(0.082)	
$log(1 + Measure of Online Payment)_{i,t}$	-0.009	-0.028	-0.037*	-0.107*	
	(0.006)	(0.017)	(0.021)	(0.054)	
Ρ	anel B. First Stage for <i>l</i>	$og(1 + {\sf In-Person} \ {\sf Paymen})$	t Flow) _{i,t}		
log(Bike Placement) _{c,t}	0.041***	0.042***	0.043***	0.044***	
	(0.010)	(0.010)	(0.012)	(0.012)	
$log(1 + Measure of Online Payment)_{i,t}$	0.260***	0.716***	0.246***	0.649***	
5((0.007)	(0.015)	(0.008)	(0.018)	
F-Statistic	16.0	16.2	14.0	14.3	
Adjusted R ²	0.572	0.574	0.544	0.545	
	Panel C. Or	dinary Least Squares			
$log(1 + In-Person Payment Flow)_{i,t}$	0.008***	0.008***	0.018***	0.018***	
	(0.001)	(0.001)	(0.002)	(0.002)	
$log(1 + Measure of Online Payment)_{i,t}$	0.011***	0.027***	0.027***	0.061***	
	(0.001)	(0.002)	(0.003)	(0.007)	
Adjusted R ²	0.742	0.742	0.837	0.836	
Measure of Online Payment	Online Payment Flow	# Online Transactions	Online Payment Flow	# Online Transactions	
Individual FE	YES	YES	YES	YES	
Year-Month FE	YES	YES	YES	YES	
Clustered by City and Year-Month	YES	YES	YES	YES	
Sample	Full Sample	Full Sample	Has Credit	Has Credit	
Observations	1,238,309	1,238,309	779,283	779,283	

Credit Access and Payment Changes

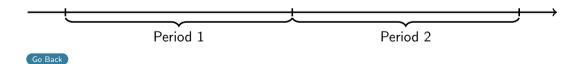
 $log(1 + \text{Total Payment Flow})_{i,t} = \alpha_0 + \sum_{\tau = -5}^{+} \beta_{\tau} \cdot \mathbb{1}(t = \tau) \cdot \mathbb{1}(\tau \neq -1) + \beta_5 \cdot \mathbb{1}(t \geq 5) + \delta_i + \mu_t + \varepsilon_{i,t}$

Setup of the Illustrative Example

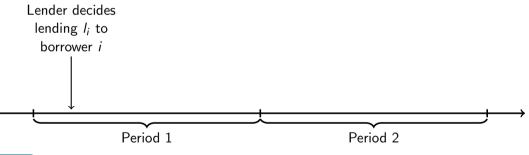
- There are a monopolistic lender and a continuum of borrowers
- Type of borrower *i*: $\theta_i \sim U[0,1]$
- Lender's expected profit of lending I_i to borrower *i*, given θ_i

$$\pi_i(heta_i, l_i) = egin{cases} heta_i + 2 \cdot heta_i \cdot l_i - l_i^2 - 1 &, ext{ if } l_i > 0 \ 0 &, ext{ if } l_i = 0 \end{cases}$$

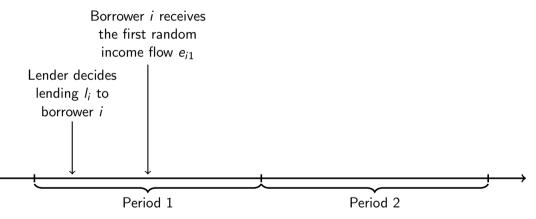
- Properties of the expected profit function
 - Fix credit line I_i , $\pi_i(\theta_i, I_i)$ increases with borrower type θ_i
 - Fix θ_i , \exists optimal credit line $I^*(\theta_i)$ that maximizes $\pi_i(\theta_i, I_i)$
 - If optimal credit line $I^*(\theta_i)$ is non-zero, $I^*(\theta_i)$ increases with θ_i
- When the lender only knows the type distribution of a group, it will lend the same to everyone if expected profit is positive


Age and Payment-Credit Relationship

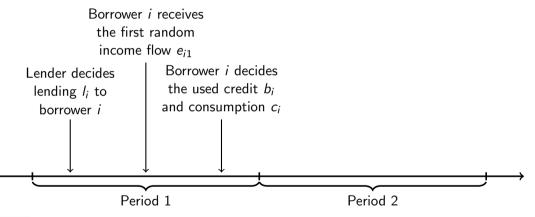
	Credit Access _{i.t}		log(Credit Line) _{i,t}	
	(1)	(2)	(3)	(4)
	Panel A. Tv	vo-Stage Least Squares		
$log(1 + In-Person Payment Flow)_{i,t}$	0.124***	0.047**	0.440***	0.176**
	(0.041)	(0.020)	(0.177)	(0.065)
Pa	nel B. First Stage for	log(1 + In-Person Payme)	ent Flow) _{i,t}	
<i>log</i> (Bike Placement) _{c.t}	0.032***	0.049***	0.030***	0.054***
	(0.010)	(0.012)	(0.011)	(0.013)
F-Statistic	9.7	17.8	7.0	16.6
Adjusted R ²	0.552	0.539	0.559	0.483
Individual FE	YES	YES	YES	YES
Year-Month FE	YES	YES	YES	YES
Clustered by City and Year-Month	YES	YES	YES	YES
Sample	Full Sample	Full Sample	Has Credit	Has Credit
Subsample	Older than Median	Younger than Median	Older than Median	Younger than Mediar
Observations	577,711	654,823	335,670	443,402
N/_/			* . 0.1 *	

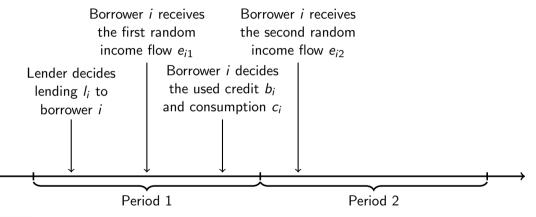

Note:

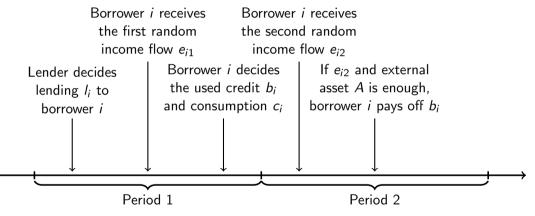
Timeline

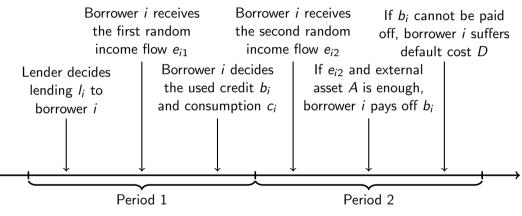


Timeline




Timeline





Go Back

Random Income Flow

• Income flow of borrow *i* in period t = 1, 2 is determined by:

$$e_{it} = X_i\beta + y_i + \epsilon_{it}$$

where

- X_i is a vector of observant characteristics of borrower i
- y_i is an unobservant type of borrower i
 - We assume $y_i \in \mathcal{N}(0, \sigma_y^2)$
 - The density function is $g(y) = rac{1}{\sigma_y \sqrt{2\pi}} e^{-y^2/2\sigma_y^2}$
- ϵ_{it} is an unobservant shock to borrower *i* in period *t*
 - We assume idiosyncratic shock $\epsilon_{it} \in \mathcal{N}(0, \sigma_{\epsilon}^2)$ and $\epsilon_{it} \perp y_i$
 - The density function is $f(\epsilon) = rac{1}{\sigma_\epsilon \sqrt{2\pi}} e^{-\epsilon^2/2\sigma_\epsilon^2}$

Lender's Problem

- In period t = 1, the lender decides to offer a credit line of l_i to borrower i, and charges a unit fee of R for used credit b_i . In the digital payment era, we assume all the consumption are paid with digital money, and the lender observes borrower i's consumption c_i
- In period t = 2, the lender suffers a loss of the credit line amount l_i if the borrower *i* defaults
- The lender choose optimal credit line l_i to maximize its profit

$$\max_{l_i} R \cdot b_i - \mathsf{E}[\mathbb{1}_i^D | X_i, b_i, c_i; \beta, R, A] \cdot l_i$$

where $\mathbb{1}_i^D$ is a dummy variable indicating whether borrower *i* defaults in period t = 2

Borrower *i*'s **Problem**

- In period t = 1, the borrower *i* receives the random income flow e_{i1} , knows about the credit line available to her l_i , decides the amount of credit she would like to use b_i , and make the consumption c_i
 - We assume the borrower is hand to mouth in period t = 1, and the consumption is $c_i = e_{i1} + (1 R) \cdot b_i$
- In period t = 2, borrower *i* receives the random income flow e_{i2} , and tries to pay off the credit balance b_i with the income and an external iliquid asset *A*. If the balance cannot be paid off, borrower *i* defaults and suffers a default cost *D*
- Borrower *i* is risk-neutral and discounts future cash flows, she chooses optimal used credit *b_i* to maximize the utility

$$\max_{b_i} c_i - \rho \cdot \mathsf{E}[\mathbb{1}_i^D | X_i, b_i, c_i; \beta, R, A] \cdot D - \rho \cdot (1 - \mathsf{E}[\mathbb{1}_i^D | X_i, b_i, c_i; \beta, R, A]) \cdot b_i$$

such that

$$0 \leq b_i \leq l_i$$

First Order Conditions

• FOC of the lender's problem

$$R \cdot \frac{\partial b_i}{\partial l_i} - \Phi(\frac{b_i - A - e_{i1}}{\sqrt{2}\sigma_{\epsilon}}) - \phi(\frac{b_i - A - e_{i1}}{\sqrt{2}\sigma_{\epsilon}}) \cdot \frac{l_i}{\sqrt{2}\sigma_{\epsilon}} \cdot \frac{\partial b_i}{\partial l_i} = 0$$

• FOC of the borrower *i*'s problem

$$(1-R) - \phi(\frac{b_i - A - e_{i1}}{\sqrt{2}\sigma_{\epsilon}}) \cdot \frac{\rho \cdot (D - b_i)}{\sqrt{2}\sigma_{\epsilon}} - \rho \cdot [1 - \Phi(\frac{b_i - A - e_{i1}}{\sqrt{2}\sigma_{\epsilon}})] = 0$$

Go Back

Estimation Steps and Identification

- Calibrate credit usage fee R=0.03 and discounting parameter ho=0.9
- Assume borrower *i* has fully shifted from cash to digital money for consumption when her credit line stops increasing
 - Assume that in these months, $c_i = e_{i1} + (1-R) \cdot b_i$ holds
 - Back up monthly income with the consumption and used credit
 - Assume monthly income is determined by $e_{i1} = X_i \beta + y_i + \epsilon_{i1}$
 - The variations in monthly income help us to estimate σ_ϵ
 - Use the average monthly values as the observed c_i , b_i and e_{i1} respectively
- Estimate the parameters β and σ_y with a regression
 - Run the OLS regression: $e_{i1} = X_i\beta + y_i + \epsilon_{i1}$
 - Let observables X_i include gender, education, age, and city
- Estimate A by using lender's FOC as the moment condition
 - Assume lender uses heuristics to predict used credit: $b_i = \lambda \cdot I_i$
- Estimate D by using borrower's FOC as the moment condition

Expectation of Default

• When lender knows borrower *i*'s consumption *c_i* (Digital Money User) Derivation

$$\begin{split} \mathsf{E}[\mathbb{1}_{i}^{D}|X_{i},b_{i},\mathbf{c}_{i};\beta,R,A] &= \Phi(\frac{b_{i}-A-e_{i1}}{\sqrt{2}\sigma_{\epsilon}})\\ &= \mathsf{E}[\mathbb{1}(X_{i}\beta+y_{i}+\epsilon_{i1}-\epsilon_{i1}+\epsilon_{i2}+A-b_{i}<0)|X_{i},b_{i},c_{i};\beta,R,A]\\ &= \int_{-\infty}^{+\infty}\mathbb{1}(\epsilon_{i2}-\epsilon_{i1}< b_{i}-A-e_{i1}|b_{i},e_{i1})f(\epsilon_{i1})f(\epsilon_{i2})d\epsilon_{i1}d\epsilon_{i2} \end{split}$$

• When lender doesn't know consumption c_i (New Digital Money Adopter) Derivation

$$E[\mathbb{1}_{i}^{D}|X_{i}, b_{i}; \beta, R, A] = \Phi(\frac{b_{i} - A - X_{i}\beta}{\sqrt{\sigma_{\epsilon}^{2} + \sigma_{y}^{2}}})$$
$$= E[\mathbb{1}(X_{i}\beta + y_{i} + \epsilon_{i2} + A - b_{i} < 0)|X_{i}, b_{i}; \beta, R, A]$$
$$= \int_{-\infty}^{+\infty} \mathbb{1}(y_{i} + \epsilon_{i2} < b_{i} - A - X_{i}\beta|X_{i}, b_{i}; \beta)g(y)f(\epsilon_{i2})dyd\epsilon_{i2}$$

Expectation of Borrower *i*'s Default

• When the agent knows borrower *i*'s consumption *c_i*

$$\begin{split} & \mathsf{E}[\mathbb{1}_{i}^{D}|X_{i}, b_{i}, c_{i}; \beta, R, A] \\ &= \mathsf{E}[\mathbb{1}(e_{i2} + A - b_{i} < 0)|X_{i}, b_{i}, c_{i}; \beta, R, A] \\ &= \mathsf{E}[\mathbb{1}(X_{i}\beta + y_{i} + \epsilon_{i2} + A - b_{i} < 0)|X_{i}, b_{i}, c_{i}; \beta, R, A] \\ &= \mathsf{E}[\mathbb{1}(X_{i}\beta + y_{i} + \epsilon_{i1} - \epsilon_{i1} + \epsilon_{i2} + A - b_{i} < 0)|X_{i}, b_{i}, c_{i}; \beta, R, A] \\ &= \mathsf{E}[\mathbb{1}(e_{i1} - \epsilon_{i1} + \epsilon_{i2} + A - b_{i} < 0)|X_{i}, b_{i}, c_{i}; \beta, R, A] \\ &= \mathsf{E}[\mathbb{1}(\epsilon_{i2} - \epsilon_{i1} < b_{i} - A - e_{i1})|b_{i}, e_{i1}] \\ &= \int_{-\infty}^{+\infty} \mathbb{1}(\epsilon_{i2} - \epsilon_{i1} < b_{i} - A - e_{i1}|b_{i}, e_{i1})f(\epsilon_{i1})f(\epsilon_{i2})d\epsilon_{i1}d\epsilon_{i2} \\ &= \Phi(\frac{b_{i} - A - e_{i1}}{\sqrt{2}\sigma_{\epsilon}}) \end{split}$$

Expectation of Borrower *i*'s Default

- When the agent doesn't know borrower *i*'s consumption *c_i*
 - $\circ\,$ E.g. when the borrower makes consumption with cash instead of digital money, the lender does not know this information

$$\begin{split} & \mathsf{E}[\mathbb{1}_{i}^{D}|X_{i}, b_{i}; \beta, R, A] \\ &= \mathsf{E}[\mathbb{1}(e_{i2} + A - b_{i} < 0)|X_{i}, b_{i}; \beta, R, A] \\ &= \mathsf{E}[\mathbb{1}(X_{i}\beta + y_{i} + \epsilon_{i2} + A - b_{i} < 0)|X_{i}, b_{i}; \beta, R, A] \\ &= \mathsf{E}[\mathbb{1}(y_{i} + \epsilon_{i2} < b_{i} - A - X_{i}\beta)|X_{i}, b_{i}; \beta] \\ &= \int_{-\infty}^{+\infty} \mathbb{1}(y_{i} + \epsilon_{i2} < b_{i} - A - X_{i}\beta|X_{i}, b_{i}; \beta)g(y)f(\epsilon_{i2})dyd\epsilon_{i2} \\ &= \Phi(\frac{b_{i} - A - X_{i}\beta}{\sqrt{\sigma_{\epsilon}^{2} + \sigma_{y}^{2}}}) \end{split}$$

Estimation Specifications

- Data cleaning
 - $\,\circ\,$ Consumption and used credit are winsorized at 5% and 95%
 - The months with zero consumption are dropped
- OLS regression specification

$$e_{i1} = \beta_0 + \beta_{male} \cdot \mathbb{1}_i^{male} + \sum_{edu \in U} \beta_{edu} \cdot \mathbb{1}_i^{edu} + \sum_{k \in K} \beta_k \cdot \mathbb{1}_i^{k-5 < age \le k} + \sum_{city \in C} \beta_{city} \cdot \mathbb{1}_i^{city} + u_i$$

where $U = \{\text{Below College, Undergraduate, Graduate}\},\$ $K = \{1930, 1935, ..., 2010\}, C$ include 340 unique cities in China, and error term $u_i = y_i + \epsilon_{i1}$, thus $u_i \in \mathcal{N}(0, \sigma_y^2 + \sigma_\epsilon^2)$

Distribution of Observed Variables

	Ν	Mean	Std	Min	p25	Median	p75	Max
Ci	38,276	1,595.1	2,049.9	0.0	134.4	715.5	2,210.5	7,606.7
bi	38,276	487.7	732.9	0.0	0.0	56.3	731.0	2,377.8
e_{i1}	38,276	1,122.0	1,665.8	0.0	48.8	344.2	1,431.9	7,606.7
li	38,276	7,145.5	10,256.8	0.0	0.0	3,000.0	10,000.0	61,000.0

Distributional Effects

• The payment information leads to better financial inclusion

	$\Delta log(Credit Line_i), \%$	$\Delta log(Consumer Welfare_i), \%$	$\Delta log(Lender Profit_i), \%$	$\Delta log(Annualized Default Rate_i), \%$
	(1)	(2)	(3)	(4)
Low Education;	1.558**	0.036***	0.708***	0.007**
	(0.786)	(0.011)	(0.222)	(0.003)
Older than Median _i	1.164**	0.027***	0.392***	-0.001
	(0.530)	(0.007)	(0.150)	(0.002)
Malei	1.326***	0.009	0.128	-0.0003
	(0.493)	(0.007)	(0.139)	(0.002)
City FE	YES	YES	YES	YES
Observations	38,008	38,008	38,008	38,008
R^2	0.031	0.006	0.009	0.007

Note:

*p < 0.1; **p < 0.05; ***p < 0.01

