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Byzantine Fault Tolerance (BFT) in Blockchains



BFT is Older than Blockchains
• Classic problem with known solutions in distributed databases

• going back to late 1970’s

• Resurgence of interest 
• blockchains – distributed ledgers
• BFT protocols as guidance for designing blockchain protocols

• Crucial difference in adversarial environment
• traditional distributed databases: 

• some nodes may fail or be hacked, others follow the protocol
• blockchains: 

• nodes are independent entities, individually payoff-maximizing
• every node decides whether it’s worth for them to follow the protocol or deviate

• need for economic incentives in analysis of BFT consensus



Economic Model of BFT Consensus
• Characterize equilibria

• not every design achieves consensus in presence of rational agents
• designs differ in how costly they are

• incentives à cost of the system

• Show how the design of the protocol affects the system cost of 
incentives needed for consensus in equilibrium
• One example:

• traditional (and current blockchain) BFT protocols recommend that nodes 
send and forward messages as much as they can

• we show that in the presence of message loss, it may be prohibitively costly 
to achieve reliable consensus with such strategies

• lowering the probability with which the message is sent achieves consensus 
at a lower system cost



Byzantine Fault Tolerant (BFT) protocols

Classic problem in computer science (eg, Lamport, Shostak, Pease `82)

• Distributed computer nodes communicate with each other to …

• Reach consensus based on “local” information (no “global” knowledge)

• Byzantine nodes behave arbitrarily

• Stipulate “honest” strategies for non-Byzantine nodes

• Widely used in tech companies to maintain distributed databases
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This paper (given that blockchains live in trustless environments)

• Non-Byzantine nodes are rational
• Ambiguity averse (Knightian uncertain) about Byzantine strategies



Consensus game

A game among a measure of n computer nodes:
• Nature randomly selects one node as the leader;

• Denote all other nodes as backups;
• Leader decides, for each backup, whether to send a 

message;
• e.g. new batch of transactions in a blockchain; problem.oblem.

• Each backup receiving message from leader
• (if yes), for each other node, whether to forward message;

• Each node then decides whether to commit to message
• based on its local information set.

For simplicity, we study one round of synchronous peer communication in a single view. Lamport, Shostak and Pease (1982) study
f rounds. Castro and Liskov (1999) (PBFT) study two rounds of communication with view changes. We also assume adequately
close message delivery speeds to justify simultaneous moves in each step.
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Two types of nodes

• Measure f of Byzantine nodes, who may take arbitrary actions;

• Measure n−f of rational nodes, who maximize utilities:

Consensus succeeds iff “almost all” (measure n−f) rational nodes commit

• A dynamic game of imperfect info. w/ “cheap talk” &“coordination”

Solution concept: 

• perfect Bayesian eqm + multi-priors over Byzantine strategies 

if consensus on message

Succeeds Fails

Commit to message R > 0 -c < 0

Not commit to message 0 0
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Ambiguity aversion

• Rational nodes are ambiguity averse towards Byzantine strategies
• “assume worst case scenario”

• Formally, a rational node ! at any information set "# facing all possible 
Byzantine strategies in ℬ chooses action ai to maximize

min(∈ℬ Ε[,#(.#, 01#; 3)|"#]



Characterizing all symmetric equilibria

Consider a candidate symmetric equilibrium in which 
• a rational leader sends message to each backup with prob. p
• a rational backup forwards message (if received) with prob. q
• a backup commits iff receiving

k ∈ "#⊂ [0, (n − f) q + f] messages, with one from the leader; or 
k ∈ "%⊂ [0, (n − f) q + f] messages, none of which is from the leader.

• If "# ∪ "% = ∅, then a gridlock equilibrium (failed consensus)
• Our interest is in (successful) consensus equilibrium with p > 0 and q > 0
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• Byzantine nodes can 
coordinate: 

• Deliver any number of 
msgs in this range 
with perfect precision
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The properties of a consensus equilibrium

A consensus equilibrium has 
!" ∪ !$ = [ ' − ) *+, ' − ) *+ + )*]

A rational backup who knows the leader is Byzantine 
• always gets −c from committing… 
• thus does not commit
• except for when * = 1 and she receives exactly 0 = ' − ) + + ) messages
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Need to characterize conditions 
for reward/penalty ' and ( under 
which it is indeed preferred to 
commit in this interval 



All symmetric equilibria 

• A “gridlock" equilibrium: discard communications and never commit
• Singleton-!"-equilibria indexed by # ∈ (0,1] when * − , - ≥ ,/:

• A rational leader sends message to each backup with 0 = 1;
• A rational backup forwards message (if received) with prob. # ∈ 0,1 ; 
• A rational backup commits iff receiving 2 ∈ [ * − , #, * − , # + ,] messages, 

with one from the leader or * − , # + , messages without any from the leader, 
i.e. 56 = * − , #, * − , # + , and 57 = { * − , # + ,}.

• Interval-!"-equilibria indexed by 0, # ∈ (0,1] when 6: * − , - ≥ ,/:
• A rational leader sends message to each backup with prob. 0 ∈ [ ;<

=>; ? , 1− ;<
=>; ? ];     

• A rational backup forwards message (if received) with prob. # ∈ (0,1]; 
• A rational backup commits iff receiving 2 ∈ [ * − , 0#, * − , 0# + ,0] messages, 

receiving from the leader or not, i.e. 57 = 56 = [ * − , 0#, * − , 0# + ,0]
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Equilibria and Blockchain Protocol

• What does an existence (or not) of an equilibrium mean for 
blockchain protocol design?

• If the protocol prescribes p, q, E0, E1, c, R s.t. p, q, E0, E1 is an 
equilibrium given n, f, c and R, then rational nodes have no incentive 
to deviate, and consensus is reached

• We can calculate the cost of incentives needed (R, c) to achieve 
consensus given p

• singleton-E0-eq’a require lower R than fractional-p-eq’a (for the same c)

• for interval-E0-eq’a, p further from ½ requires higher R



Interval-E0 equilibria

• If message from the leader received, the expected payoff from committing:
!(# − %)

! # − % + % ( +
%

! # − % + % (−))
• If message from the leader not received, the expected payoff from 

committing: 
(1 − !)(# − %)

(1 − !) # − % + % ( +
%

(1 − !) # − % + % (−))

• For both to be positive, p cannot be too large or too small
• ! ∈ [ -.

/0- 1 , 1− -.
/0- 1 ];

• and only when 23 # − % ( ≥ %)



Message losses

• All messages sent are delivered with prob. ! < 1
• A “gridlock” equilibrium still exists
• Singleton-"#-equilibria no longer exist
• Interval-"#-equilibria require higher $/& to sustain for small !
• Supporting $/& regions expands as message loss prob. ! decreases 



Why does it matter?

• Operational success of any blockchain depends on its design.

• Accounting for incentives in BFT consensus:

• All designs are subject to multiple equilibria concerns

• gridlock equilibria always exist ⇒ possibility of system stuck

• Small probability of message loss significantly affects equilibria

• Provides guidance on cost of incentives needed to achieve consensus

• Less costly when protocol asks for sending message with p=1/2

• Recommendation different from traditional BFT


