Discussion of H. Halaburda, Z. He and J. Li's An economic model of consensus on distributed ledgers

Cyril Monnet (Uni Bern and Study Center Gerzensee)

Question

How to reach consensus in distributed ledgers...

When some agents are honest and utility maximizing...

• ... while others seek to jeopardise the whole system (**Byzantines**)?

Definition

 Consensus is achieved when all honest agents "commit" to a block (add the block to their local blockchain)

Simple set up

- A continuum (n-f) of honest agents
- A continuum f of Byzantine agents
- A randomly selected leader suggests a block (message)
- Agents who received the block can also sends that block to others
- Given the number of messages received, should an honest agent commit?
- If an honest agent commits and all others do, this agent gets R
- If an honest agent commits, and some do not, this agent gets -c
- If an honest agent does not commit, this agent gets 0

Simple(r) set up

- A continuum finite number (n-f) of honest agents
- A continuum finite number f of Byzantine agents
- A randomly selected leader suggests a block (message)
- Agents who received the block can also sends that block to others
- Given the number of messages received, should an honest agent commit?
- If an honest agent commits and all others do, this agent gets R
- If an honest agent commits, and some do not, this agent gets -c
- If an honest agent does not commit, this agent gets 0

Simple(r) set up

ŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢ

- Honest leader does not know who is honest or Byzantine
- To reach consensus, same message should reach all honest agents
- Does not matter if Byzantine agents receive it as well

Simple(r) set up

- If honest agents know the leader is honest: 2 equilibrium
 - they commit and get R
 - they don't commit and get 0 (gridlock)

Simple(r) set up Honest Leader

- A Byzantine leader maximizes damage by communicating the block to all but one. • Honest agents who receive message cannot tell if the leader is Byzantine

Simple(r) set up Honest Leader Ĩ Ĩ Ĩ • Honest agents commit iff $\frac{n-f}{-}R - \frac{f}{-}c \ge 0$ N

This is also their expected payoff

N

- Honest agents always commit
- The best strategy for a Byzantine leader is to submit no block

• Expected payoff :
$$\frac{n-f}{---R}$$

- The best strategy for a Byzantine leader is to submit no block

• Expected payoff :
$$\frac{n-f}{n}R$$

But failure to deliver message would

- Suppose a message reaches an honest agent only with probably π
- Proba it reaches all honest agents is $\pi^{(n-f)}$

But failure to deliver message would

- The probability all honest agents become informed is $\pi(\pi^{n-f-1})$

• The Byzantine leader now can choose h to inflict maximum damage — sends to 1 honest agent

But failure to deliver message would

honest agent

• The probability all honest agents become informed about block is $\pi(\pi^{n-f-1})$

• Honest agents commit whenever
$$\left[\frac{n-f}{n} + \frac{f}{n}\right] \pi^{n-f}R - \left[\frac{n-f}{n} + \frac{f}{n}\right] \left[1 - \pi^{n-f}\right]c \ge 0$$

it more difficult to achieve consensus (R is a convex function of n-f!)

• The Byzantine leader now can choose h to inflict maximum damage — choose to send to 1

• Holding the fraction of honest agents constant, an increase in number of agents would make

Key Takeaways

believe one other will not commit it is optimal not to commit

• (Layers of) communication helps consensus (!)

which makes it **more difficult** to achieve consensus

• With rational honest agents, there always exists a gridlock equilibrium : If honest

"More" distribution (a higher number of agents) implies more communication

• Consensus requires higher rewards as faults become increasingly likely (convex!)

Final remarks

- I laud the authors for characterising all(!!) (symmetric) equilibria
 - Nice proof using iterated deletion of dominated strategies
 - But could this be simplified by determining the objective of the honest leader?

- Also, honest agents maximise their payoff under the worst case scenario -> helps reduce the set of equilibrium strategies
 - but what is the objective of the Byzantine agents (achieve maximum damage?) lacksquare

Final remarks

- "Anything goes"-consensus
 - whole system

- - Garratt and Monnet (2022)
 - Also Amoussou-Guenou et al. (2021), Auer et al. (2021)

• But the message better be correct: consensus on the wrong block jeopardizes the

• Achieving consensus on the truth is hard -> requires verification and validation

• This paper can help, e.g. learning if the leader is B or not through # messages

Last slide

Would adding communication rounds help?

enough?)

Must read paper on consensus on distributed ledgers!

• Can the mechanism allow "near" consensus? (if 99% of honest agents agree, is that

