Best Before? Expiring Central Bank Digital Currency and Loss Recovery¹

Charles M. Kahn^a Maarten R.C. van Oordt^b Yu Zhu^c

^aUniversity of Illinois

^bVrije Universiteit Amsterdam

^cBank of Canada

The CB & DC Seminar Series

24 June 2022

¹Views expressed do not necessarily reflect official positions of the Bank of Canada.

Economic research agenda on CBDC

As central banks explore issuing digital cash substitutes...

- Kosse and Mattei (2022); Group of Seven Central Banks (2020); Bank of Canada (2020); European Central Bank (2021)
- ...the focus is increasingly shifting from whether to issue...
 - Barrdear and Kumhof (forthcoming); Brunnermeier and Niepelt (2019); Andolfatto (2020); Chiu et al. (2019); Fernández-Villaverde et al. (2021); Keister and Sanches (forthcoming); Williamson (forthcoming)
- ...towards design aspects of CBDC
 - Security (Kahn et al., 2020)
 - Interest (Barrdear and Kumhof, forthcoming; Jiang and Zhu, 2021)
 - Privacy (Garratt and Van Oordt, 2021; Lee and Garratt, 2021)
 - Programmability (Kahn and Van Oordt, 2021)
 - Multiple features (Li, 2021; Huynh et al., 2020; Bijlsma et al., 2021)
 - Expiry date and personal loss recovery: This paper
 - Note: not to stimulate spending (Andolfatto, 2020)

An important advantage of physical cash: Payments can be made without power or network connectivity.

- Developing countries
- Remote locations
- Cyberattacks or technological failures
- Natural disasters
- Geopolitical conflicts

Central banks aim for similar offline capability in electronic cash substitute. Argues for device-based storage.

Ruling out double-spending requires

- storing balances uniquely in (tamper-resistant) device, and
- Separation of funds that can be spend with that device

Ruling out double-spending requires

- **9** storing balances uniquely in (tamper-resistant) device, and
- **2** separation of funds that can be spend with that device

Ruling out double-spending requires

- storing balances uniquely in (tamper-resistant) device, and
- **②** separation of funds that can be spend with that device

Consequence: Loss of device implies loss of funds... (analogy to cash)

Ruling out double-spending requires

- **9** storing balances uniquely in (tamper-resistant) device, and
- **2** separation of funds that can be spend with that device

Consequence: Loss of device implies loss of funds...

This paper: Can we reduce the cost of digital cash losses?

Ruling out double-spending requires

- **9** storing balances uniquely in (tamper-resistant) device, and
- **2** separation of funds that can be spend with that device

Consequence: Loss of device implies loss of funds...

This paper: Can we reduce the cost of digital cash losses?

- Yes, we can do so with an expiry date.
- Automatically reimburse consumers expired offline balances
- Interesting economic trade-offs.

Idea in a nutshell

Idea in a nutshell

Expiry date and loss recovery

Ok. Expired cash gets reimbursed.

Expiry date and loss recovery

Ok. Expired cash gets reimbursed.

But who "lost" the cash?

Expiry date and loss recovery

Ok. Expired cash gets reimbursed.

But who "lost" the cash?

We consider two information structures:

• "Higher privacy"

- Syncing payor's device does not reveal whether and where payor spent offline balances
- Onus is on payees to deposit balances before expiry date

Ok. Expired cash gets reimbursed.

But who "lost" the cash?

We consider two information structures:

• "Higher privacy"

- Syncing payor's device does not reveal whether and where payor spent offline balances
- Onus is on payees to deposit balances before expiry date

• "Lower privacy"

- Syncing device reveals whether and where payor spent offline balances.
- Payee still wants to deposit balances before expiry date
- If payor's device reveals offline balances were used to pay a payee without being deposited, then that payee is reimbursed

- Loss recovery with expiry date could have a substantial positive impact on demand for offline balances and welfare.
- Less costly to set a longer than optimal expiry date than to set an expiry date that is too short.
- More information-sharing between consumers and the central bank can improve loss recovery but has an ambiguous impact on social welfare.

- Small model (understand trade-offs)
- Infinite horizon model (idea of quantitative impact)
- Conclusion

Goal: Illustrate trade-offs related to the expiry date

Cash: a money balance that can be used for offline payments

• Stored-value in a payment card or smartphone chip

Cash "insures" consumption during outages, but is subject to losses.

At t = 0, the consumer decides how much cash to hold

- Online balances pay interest *i*, cash does not
- A preference shock is realized
 - Consumer either want to consume one or two units at t = 1

Two independent random shocks realized

- An outage disrupting the connectivity for payments may occur
- Consumer may lose cash (probability δ)

Consumers buy goods from producers

- If no outage, both online balances and cash can be spent
- If outage, only cash can be spent and consumption will bounded by cash holdings

Timeline: t = 2, 3

At t = 2:

- Producer may lose offline cash with probability η
- Outage ends if there is one
- Withdraw/deposit cash and online payments arrive

At t = 3, everybody enjoys counting their money

If paid with offline payments, competitive producers charge a premium, to compensate for potential losses; thus consumer's default payment instrument is online.

Consumers hold offline money as a precaution, to facilitate trade during outages. Holdings limited by

- Chance of loss
- Inconvenience or opportunity cost of sequestering on the device (modeled as interest rate differential)

How to account for lost cash?

- Lost cash is a windfall profit for the central bank
- Reimbursing lost cash is costly to the central bank
- Net welfare effect of reimbursed cash is zero in the aggregate

In equilibrium, social welfare equals expected number of units consumed per consumer

Results: No expiry date

Consumers' cash holdings

Hold cash to purchase 1 or 2 units if the benefit exceeds the cost.

- Benefit comes from ability to consume during an outage
- Cost includes foregone interest and cost of cash losses: $i + \delta$

Constraint for carrying enough cash to purchase a second unit is more demanding

• Only with probability one-half consumers are interested in consuming the second unit

Social welfare:

• Reducing likelihood of losing cash would increase welfare, because increases buyer willingness to hold cash, and thus increases offline trade.

Acceptance:

Cash expires in period 2 before the producer can deposit cash

• Central bank would automatically reimburse the consumer

Producers reject cash

Cash holdings:

None

Social welfare:

- No transactions occur during outages...
- Reduced to the level in a no-cash environment

Acceptance:

Producers know outage will end before expiry date, so willing to accept cash.

Cash holdings:

Consumers may hold more cash because the cost of cash losses is reduced

- Consumers are reimbursed for lost cash with some delay
- Cost of carrying cash is

 $i + \delta(1 - \beta^2)$

Social welfare:

- Strictly improves whenever equilibrium cash holdings are higher
- With high privacy this is generally the case

After an outage, would consumers be willing to reconnect?

- Consumers who spent all offline cash do not reconnect
- Consumers who have unspent cash reconnect iff i ≥ η (interest foregone vs windfall if producer loses cash)

Two situations:

- If *i* < η, increase in cost of precautionary cash holdings...
 Reduction in social welfare
- If i ≥ η, some producers charge lower "cash" prices because of reimbursement for cash losses: May improve social welfare

Small model helps to better understand economic trade-offs

How about the quantitative impact?

Calibration of more complex model to get a rough idea...

Parameter	Daily value	(annualized)
Discount factor (β)	0.99990	0.96
Risk aversion (σ in $u(c) = \frac{c^{1-\sigma}}{1-\sigma}$)	0.70	
Loss probability consumer (δ)	0.0004858	0.162
Loss probability producer (η)	0.0004858	0.162
Outage probability (λ) – Length: Poisson distribution	0.00061 9.555	0.20 0.0262

Conduct online survey: 16.2% (8.4%) people lost or damaged their cards (phones) in the previous year

Cash holdings as a function of the time to expiration

- Loss recovery based on introducing an expiry date could have a substantial positive impact on consumer demand for offline digital currency balances.
- The cost of setting a longer than optimal expiry date is small; setting an expiry date that is too short has a large negative impact.
- More information sharing between consumers and the central bank can improve loss recovery but has an ambiguous impact on social welfare.

Thank you

- D. Andolfatto. Hot Money for a Cold Economy. Federal Reserve Bank of St. Louis Working Paper, 2020-019, 2020.
- Bank of Canada. Contingency Planning for a Central Bank Digital Currency. *Technical Document*, 2020. URL https://www.bankofcanada.ca/2020/02/contingency-planning-central-bank-digital-currency.
- J. Barrdear and M. Kumhof. The Macroeconomics of Central Bank Issued Digital Currencies. Journal of Economic Dynamics & Control, forthcoming.
- M. Bijlsma, C. van der Cruijsen, N. Jonker, and J. Reijerink. What Triggers Consumer Adoption of CBDC? De Nederlandsche Bank Working Paper, 709, 2021.
- M.K. Brunnermeier and D. Niepelt. On the Equivalence of Private and Public Money. Journal of Monetary Economics, 106:27–41, 2019.
- J. Chiu, M. Davoodalhosseini, J.H. Jiang, and Y. Zhu. Central Bank Digital Currency and Banking. Bank of Canada Staff Working Paper, 2019-20, 2019.
- European Central Bank. Eurosystem Launches Digital Euro Project. Press release (July 14), 2021. URL https://www.ecb.europa.eu/press/pr/date/2021/html/ecb.pr210714~d99198ea23.en.html.
- J. Fernández-Villaverde, D. Sanches, L. Schilling, and H. Uhlig. Central Bank Digital Currency: Central Banking For All? *Review of Economic Dynamics*, 41:225–242, 2021.
- R.J. Garratt and M.R.C. Van Oordt. Privacy as a Public Good: A Case for Electronic Cash. Journal of Political Economy, 129(7):2157–2180, 2021.
- Group of Seven Central Banks. Central Bank Digital Currencies: Foundational Principles and Core Features. Bank of International Settlements, 2020. ISBN 978-92-9259-427-5. URL https://www.bis.org/publ/othp33.pdf.
- K. Huynh, J. Molnar, O. Shcherbakov, and Q. Yu. Demand for Payment Services and Consumer Welfare: The Introduction of a Central Bank Digital Currency. Bank of Canada Staff Working Paper, 2020-7, 2020.
- J. Jiang and Y. Zhu. Monetary Policy Pass-Through with Central Bank Digital Currency. Bank of Canada Staff Working Paper, 2021-10, 2021.
- C.M. Kahn and M.R.C. Van Oordt. On the Demand for Programmable Payments. Working Paper, 2021.
- C.M. Kahn, F. Rivadeneyra, and T.-N. Wong. Eggs in One Basket: Security and Convenience of Digital Currencies. Federal Reserve Bank of St. Louis Working Paper, 2020-32, 2020.
- T. Keister and D.R. Sanches. Should Central Banks Issue Digital Currency? *Review of Economic Studies*, forthcoming.
- A. Kosse and I. Mattei. Gaining momentum: Results of the 2021 BIS survey on Central Bank Digital Currencies. Bank of International Settlements Papers, 125, 2022.
- M. Lee and R.J. Garratt. Monetizing Privacy. Federal Reserve Bank of New York Staff Report, 958, 2021.
- J. Li. Predicting the Demand for Central Bank Digital Currency: A Structural Analysis with Survey Data. Bank of Canada Staff Working Paper, 2021-65, 2021.
- S. Williamson. Central Bank Digital Currency: Welfare and Policy Implications. Journal of Political Economy, forthcoming.

Offline payment trilemma

Some survey evidence in the US

(probability of losing balance during a year: on card $\pm 16\%$, on phone $\pm 8\%$)

Over the past 12 months, did you replace or cancel a payment card (for example, a debit or credit card) because it was damaged, physically stolen or lost?

Over the past 12 months, was your smart phone stolen, permanently lost, or broken so that you could no longer start it?

1,118 respondents

Cash holdings with low discount factor ($\beta = 0.76$)

- Image phone 22864711 by VectorStock / Sergeyyy.
- Image store building from Wikimedia Commons by Videoplasty.com.
- Image tree from Wikimedia Commons by Noto Project.