Platforms, Tokens, and Interoperability

Markus K. Brunnermeier

Jonathan Payne Princeton University

Virtual Seminar Series on CBDC 18. November 2021

Tech Trends

- Digital platforms
- Digital tokens
- CBDC

matching technology payment technology

- Policy Questions
 - How to regulation competition between
 - Public Market
 - Private Token (stable coin) ₹ ← Private Token ₹' ■ \$ (CBDC)
 - Should CBDC be legal tender?
- Key: Interoperability

Forms of Interoperability

- 1. Token Exchangeability (without fee)
 - Token platform cannot charge exchange (exit) fee
- 2. Token Acceptability (for contracting and payment)
 - All tokens are accepted on all platforms
 - CBDC as legal tender
- 3. Ledger **Portability**
 - Entrant platform can take over incumbent ledger

Forms of Interoperability

- Token **Exchangeability** (without fee)
 - Token platform cannot charge exchange (exit) fee
- Token Acceptability (for contracting and payment) 2.
 - All tokens are accepted on all platforms
 - CBDC as legal tender
- Ledger **Portability** 3.
 - Entrant platform can take over incumbent ledger

■ avoids lock-in effect lower markup on retail platform

destroys commitment via less credit smart contracts

new platform can't credibly inflict defaults on old platform

Model ingredients – big picture

- Usual: Matching model with matching intensity λ No tokens Agents have no platform choice
- Here: "Strategic platform" competes with public market + entrant platform Platforms issue tokens
 - Choice:
 - On retail space: mark-up ψ
 - interoperability of token, credit interest rate (κ) On payment space:
- Agents (buyers/sellers) risk-neutral with time preference rate ρ
 - Discrete Choice:
 - Which market/platforms

Model setup

 p_t^P \hat{p}_t^P

Mark-up

- Agents decides which platform to "search"
- Trading opportunities arise
- All "active agents trade competitively at platform specific price for seller for buyer

private (entrant) $\overline{F}' \quad \lambda^e \text{ arrival rate}$ Matching edge $\lambda^{s\overline{T}'i} = (1 + \Lambda)\lambda^{s\overline{T}i}$

When entrant enters, public market place matching rate also improves by factor Λ

Roadmap

Motivation and Preview

Model 1: without credit

Sellers hold tokens until the opportunity to become buyer

Model 2: with credit via smart contracts

Buyers borrow from platform until opportunity to become seller

Model 1 (without Credit)

• **Platform** sets - mark-up ψ for goods price - exchange (exit) fee $\varepsilon^{\$}, \varepsilon^{\$}'$

Agents

Decision between ¥ and \$

Anticipated Lock-in Effect (agents stay away from lock-in)

Lock-in Effect

Past sellers had no opportunity to hold T'

Model 1 (without Credit)

- **Platform** sets mark-up ψ for goods price - exchange (exit) fee $\varepsilon^{\mathfrak{F}}$, $\varepsilon^{\mathfrak{F}}$
- Agents
 - Occasional decision between \mathfrak{F} and \mathfrak{F}' (when λ^e)

Token lock-in effect limits competition across (retail) platforms

• For $\varepsilon^{\mathfrak{F}} = 0$ and $\Lambda > 0$, platform sets $\Rightarrow \varepsilon^{\mathfrak{F}} = 1$ maximum exchange rate fee $\Rightarrow \psi^{\$} = \left(\frac{1}{1+\Lambda}\right)^{\frac{\xi^{\$} + \xi^{b}}{1+\xi^{b}}} \left(\frac{1}{1-n}\right)^{\frac{1}{1+\xi^{b}}} - 1$ decreases in entrant's edge Λ

Interaction token & retail

Lock-in Effect

Past sellers had no opportunity to hold \mathcal{T}'

Model 1 (without Credit)

- **Platform** sets mark-up ψ for goods price - exchange (exit) fee $\varepsilon^{\$}$, $\varepsilon^{\$}$
- Agents
 - Occasional decision between \mathfrak{F} and \mathfrak{F}' (when λ^e)

• Token lock-in effect limits competition across (retail) platforms

• For $\varepsilon^{\text{F}} = 0$ and $\Lambda > 0$, platform sets

 $\Rightarrow \varepsilon^{TT'} = 1$ maximum exchange rate fee Interaction $\Rightarrow \psi^{\$} = \left(\frac{1}{1+\Lambda}\right)^{\frac{\xi^{s} + \xi^{b}}{1+\xi^{b}}} \left(\frac{1}{1-n}\right)^{\frac{1}{1+\xi^{b}}} - 1 \text{ decreases in entrant's edge } \Lambda$ token & retail $\psi^{\$} = 0$

- For $\Lambda = 0$ and $\varepsilon^{\mathfrak{T}} = 0$ (exchange interoperability)
 - Implementation of $\varepsilon^{TT'} = 0$ via "CBDC as digital ledger"

Lock-in Effect

Past sellers had no opportunity to hold \mathbb{T}'

Roadmap

Motivation and Preview

Model 1: without credit

Sellers hold tokens until the opportunity to become buyer

Model 2: with credit via smart contracts

Buyers borrow from platform until opportunity to become seller

Model 2 (with Credit and Production)

- Matching platform (not intermediary) (eBay, not Amazon)
 - $\psi = 0$ no mark-ups (by assumption)
 - κ amount of credit via smart contract
- Agents (with Production)

	buyer of 1 input good		seller of $z > 1$ output
buyers			
■ <i>Ŧ vs.</i> \$			
 Enforceability 	Rate	agent's payoff	platform payoff
■ Output sold on ¥ platform	$@\lambda^{{}^{{}_{{}^{{}^{{}^{{}^{{}^{{}}}}}i}}}$	$(1-\kappa)zp^{*}$	$\kappa p^{{ m F}}$
Output sold on \$ platform	$@\lambda^{\$i}$	$\gamma_{(\kappa)} z p^{\$} 0$	i

it goods

Default

if sold on \$ platform

Model 2 (with Credit and Production)

- Matching platform (not intermediary) (eBay, not Amazon)
 - $\psi = 0$ no mark-ups (by assumption)
 - κ amount of credit via smart contract
- Agents (with Production)

buyer of 1 input good		seller of $z > 1$ output
Rate	agent's payoff	platform payoff
$@\lambda^{{}^{{}_{{}^{{}}}i}}$	$(1-\kappa)zp^{\mathrm{F}}$	$\kappa p^{{ m F}}$
$@\lambda^{\$i}$	$\gamma_{(\kappa)} z p^{\$} 0$	
	buyer of 1 in Rate $@\lambda^{\mp i}$ $@\lambda^{\$ i}$	buyerof 1 input goodRateagent's payoff $@\lambda^{\mp i}$ $(1 - \kappa)zp^{\mp}$ $@\lambda^{\$ i}$ $\gamma_{(\kappa)}zp^{\$}$ 0

• Without acceptability: Default and sell for \$ if $\lambda^{\$i} - \lambda^{\$i}$ is small

With acceptability (e.g. via CBDC as legal tender)
 kills of commitment via smart contracts
 Credit only from intermediated trades (not matching platforms)

ut goods

Default

if sold on \$ platform

Model 2 (with Credit and Production)

- Matching platform (not intermediary) (eBay not Amazon)
 - $\psi = 0$ no mark-ups (by assumption)
 - κ amount of credit via smart contract
- Agents (with Production)
 - \mathbb{F} vs. \mathbb{F}' entrant token platform (with arrival occurrence λ^e)
 - Entrant platform invites agents/creditors, who can default on incumbent platform
 - Incumbents platform's loss increases with size of its loan book
 - Lemma: For $\Lambda = 0$ (no competitive edge) entrance = paying off entrant (via killer acquisition)
 - As if incumbent faces occasionally reoccurring killer acquisition costs
 - Higher λ^e \longrightarrow lower κ (smaller loan book)
 - Portability Interoperability
 - Entrant can not credibly commit not to take over incumbent's loan book
 - Lower killer acquisition costs
- higher κ (loan book)

Anti-Lock-in Effect

Conclusion

- Platforms and token issuers interaction
 - Extra: Should retail platforms and payment platforms be allowed to merge?
- How to regulate vs. compete with platforms with CBDC?
 - Interoperability implementation as CBDC
 - Exchange
 - Acceptability
 CBDC as legal tender
 - Portability (ledger)
- CBDC as legal tender
 - restores competition between private platforms (lower mark-ups)
 - hurts credit provision via smart contracts
- Portability of ledger
 - Reduces killer acquisitions and avoids excessive entry of platforms

Extra Slides

1. Inversion of "Information Advantage"

- Information advantage for customer
 - Borrower

17

Insurance client, ...

soon, for seller/platform

- Lender (platform) "will know more about me
- Insurance company
- Asset managers, ...
- Customer has multiple attributes and knows most of them, but only platform can better connect/statistically infer them Informed principal problem
 - STATISTICAL INFORMATION
 - Correlation between attributes
 - Traditional example:
 - I like a red car
 - Insurance companies knows (from big data) that drivers of red cars are more accident prone

than I know about myself" Privacy regulation

1. From Adverse Selection to Inverse Selection

First generation

18

- Asymmetric information matters for markets
- Markets can unravel, so role for market design
- Coverage is increasing in riskiness (Counterfactual!)
- Second generation advantageous selection
 - Asymmetric information is multidimensional
 - Low-risk types buy lots of insurance due to their high risk aversion
 - Heterogeneity in risk aversion
- Third generation (?)
 - Big data changes the notion of asymmetric information
 - "who knows what" needs to be updated
 - Once insurer/platform knows some basic information about you, statistical inference allows it to know more about risks

Rothschild Stiglitz

Finkelstein, Einav, Fang