Parallel Digital Currencies and Sticky Prices

Harald Uhlig Taojun Xie

University of Chicago National University of Singapore

July 30, 2021

Motivation and Research Question

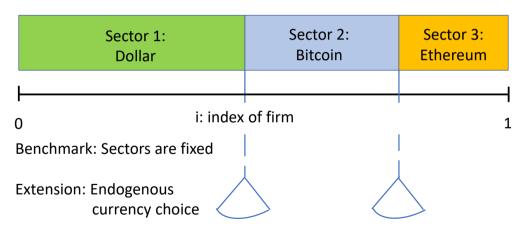
- ▶ Increasing varieties of privately issued digital currencies alongside official money:
 - ▶ Bitcoin, Ethereum, Stablecoins, ...
 - ► Companies started accepting cryptocurrencies, e.g Microsoft, Overstock, Starbucks, Rakuten, Tesla, ...
- ▶ **Question:** What happens, when firms price in these currencies, rather than the official currency?
- ► Role of money:
 - 1. **Unit of account.** Here: currency of pricing.
 - 2. Medium of exchange.
 - 3. Store of value.
- Taylor rule formulation matters:
 - ► Target all or only dollar sector?
 - ► Target aggregate price inflation or only dollar inflation?
- Approach: an NK model with multiple currencies.

Results Overview

- Exchange rate shocks arise without other sources of uncertainties
- ▶ Relative price between sectors becomes state variable. Rich sectoral dynamics.
- In response to a **dollar depreciation**:
 - Considerable persistent reallocation between sectors. Large decline in non-dollar sector. Small and temporary aggregate recession.
 - Recession is persistent, if mon pol only reacts to dollar inflation.
 - Increased flexibility of prices in non-dollar sector mitigates output drop in that sector and sectoral reallocation. None at flexible limit.
 - ► Larger non-dollar sector share induces deeper overall recession, higher inflation, larger gain to dollar sector.

Literature

- Gali (2015, June). Monetary Policy, Inflation, and the Business Cycle: An Introduction to the New Keynesian Framework and Its Applications - Second Edition. Princeton University Press.
- ► Cienfuegos, N. C. (2019, January). The Importance of Production Networks and Sectoral Heterogeneity for Monetary Policy. University of Chicago.
- ➤ Schilling, L. and H. Uhlig (2019, October). Some simple bitcoin economics. Journal of Monetary Economics 106, 16-26.
- ► Gopinath, G., O. Itskhoki, and R. Rigobon (2010, March). Currency Choice and Exchange Rate Pass-Through. American Economic Review 100 (1), 304-336.


Model - Currencies and Prices

- ightharpoonup J currencies in total, each with money supply $M_{j,t}$
 - ightharpoonup j=1: fiat currency, dollar, j
 eq 1 parallel currency, bitcoin
 - \triangleright $\mathcal{E}_{j,t}$: price of currency j in dollar
 - \triangleright $\mathcal{E}_{1,t}=1$
 - $ightharpoonup rac{\mathcal{E}_{j,t}}{\mathcal{E}_{j',t}}$: price of currency j in currency j'
- \triangleright Firms in sector j set prices in currency j, but accept payments in all currencies
 - \triangleright $V_{i,t}$: set of firms in sector j
 - $ightharpoonup v_{j,t}$: measure of sector j
 - ▶ sectoral price index $P_{j,t} = \left[\frac{1}{v_{j,t}} \int_{V_{j,t}} P_{j,t}(i)^{1-\epsilon} di\right]^{\frac{1}{1-\epsilon}}$
 - **P** general price index $P_t = \left[\sum_{j=1}^J v_{j,t} \left(\mathcal{E}_{j,t} P_{j,t}\right)^{1-\epsilon}\right]^{\frac{1}{1-\epsilon}}$
 - general price inflation $\Pi_t = \frac{P_t}{P_{t-1}}$
 - lacktriangle sectoral relative price $\hat{P}_{j,t} = rac{\mathcal{E}_{j,t}P_{j,t}}{P_t}$

Pricing Sectors

Firm i pricing currency:

Households

Lifetime utility

$$E_0 \sum_{t=0}^{\infty} \beta^t u(C_t, L_t, N_t)$$

- ▶ Consumption bundle $C_t = \left[\int C_t(i)^{1-\frac{1}{\epsilon}} di \right]^{\frac{\epsilon}{\epsilon-1}}$
- ▶ Liquidity $L_t = \sum_{j=1}^J L_{j,t}$, where $L_{j,t} = \frac{\mathcal{E}_{j,t} M_{j,t}}{P_t}$
- ightharpoonup Labour supply N_t
- Budget constraint

$$C_{t} + \frac{B_{t}}{P_{t}} + \sum_{j=1}^{J} L_{j,t} = \frac{\exp(i_{t-1})}{\Pi_{t}} \frac{B_{t-1}}{P_{t-1}} + \sum_{j=1}^{J} \frac{L_{j,t-1}}{\Pi_{t}} \frac{\mathcal{E}_{j,t}}{\mathcal{E}_{j,t-1}} + W_{t} N_{t} + \Gamma_{t}$$

Firms

- ▶ Production function $Y_t(i) = A_t N_t(i)^{1-\alpha}$
- $lackbox{1}- heta_j$ fraction of firms reset prices in sector j
- Profit maximization problem

$$\max_{P_{j,t}^*} \sum_{\ell=0}^{\infty} \theta_j^{\ell} E_t \left[Q_{t,t+\ell} \left[\frac{\mathcal{E}_{j,t+\ell} P_{j,t}^*}{P_{t+k}} Y_{t+\ell}(i) - \Psi_{t+\ell} \left(Y_{t+\ell}(i) \right) \right] \right]$$

subject to demand function
$$Y_{t+\ell}(i) = \left(\frac{\mathcal{E}_{j,t+\ell}P_{j,t}^*}{P_{t+\ell}}\right)^{-\epsilon}Y_{t+\ell}$$

Linearised Model

Nominal exchange rate between any pair of parallel currencies j and j' follows a random-walk process:

$$e_{j,t} - e_{j',t} = E_t \left(e_{j,t+1} - e_{j',t+1} \right)$$

Sectoral NKPC:

$$\pi_{j,t} = \beta E_t \pi_{j,t+1} + \kappa_j \tilde{y}_t - \lambda_j \hat{p}_{j,t}$$

where κ_i and λ_i depend on θ_i , and

$$\hat{p}_{j,t} = \hat{p}_{j,t-1} + \pi_{j,t} + \Delta e_{j,t} - \pi_t \tag{1}$$

Dynamic IS equation:

$$\tilde{\mathbf{y}}_t = \mathbf{E}_t \tilde{\mathbf{y}}_{t+1} - \frac{1}{\sigma} \left[\hat{\mathbf{i}}_t - \mathbf{E}_t \mathbf{\pi}_{t+1} - \hat{\mathbf{r}}_t^n \right]$$

Key Equations in the NK Framework

Result: Relative price between sectors becomes state variable. Rich sectoral dynamics.

With J parallel currencies, the following (2J + 2)-equation system summarises dynamics in the economy

$$\tilde{y}_t = E_t \left[\tilde{y}_{t+1} \right] - \sigma^{-1} \left(\hat{i}_t - \upsilon' E_t \left[\pi_{t+1} \right] - r_t^n \right)$$
 (2)

$$\boldsymbol{\pi}_{t} = \beta \, \mathsf{E}_{t} \left[\boldsymbol{\pi}_{t+1} \right] + \kappa \, \tilde{\mathbf{y}}_{t} - \boldsymbol{\lambda} \circ \hat{\boldsymbol{\rho}}_{t} \tag{3}$$

$$\hat{\boldsymbol{\rho}}_{t} = \hat{\boldsymbol{\rho}}_{t-1} + \left(\mathbf{I} - \mathbf{1} \, \boldsymbol{v}'\right) \left(\boldsymbol{\pi}_{t} + \Delta \boldsymbol{e}_{t}\right) \tag{4}$$

$$\hat{i}_t = \phi_\pi \, \boldsymbol{v}' \boldsymbol{\pi}_t + \phi_y \, \tilde{\mathbf{y}}_t \tag{5}$$

where \circ is an operator for element-wise multiplication.

Generalised aggregate inflation:

$$\pi_{t} = \beta E_{t} [\pi_{t+1}] + \boldsymbol{v}' \kappa \, \tilde{\mathbf{y}}_{t} - \boldsymbol{v}' (\boldsymbol{\lambda} \circ \hat{\boldsymbol{\rho}}_{t}) + \boldsymbol{v}' \Delta \boldsymbol{e}_{t}$$

Baseline Cases

- **Proposition 2 (homogeneous rigidity)**: Between any two sectors j and j' with homogeneous price rigidity θ ,
 - 1. the optimal prices in both sectors are equivalent, $p_{i,t}^* + e_{j,t} = p_{i',t}^* + e_{j',t}$;
 - 2. the bilateral relative price is an autoregressive process, $s_{ii',t} = \theta \ (s_{ii',t-1} + \Delta e_{i,t} \Delta e_{i',t});$
 - 3. the inflation differential is linear in bilateral relative price, $\pi_{j,t} \pi_{j',t} = -\frac{1-\theta}{\theta} s_{jj',t}$;
 - 4. the output-gap differential is linear in bilateral relative price, $\tilde{y}_{j,t} \tilde{y}_{j',t} = -\epsilon s_{jj',t}$.
- ▶ **Proposition 3**: The new Keynesian Philips curve for aggregate inflation is independent of the relative price dynamics if price rigidity is homogeneous across all currency sectors:

$$\pi_t = \beta \, \mathsf{E}_t \left[\pi_{t+1} \right] + \kappa \, \tilde{\mathsf{y}}_t + \boldsymbol{v}' \Delta \boldsymbol{e}_t$$

▶ **Proposition 4 (single flexible sector)**: An exchange-rate shock to any non-dollar currency *j* does not spillover to the other currency sectors if prices are perfectly flexible in sector *j*.

Monetary Policy

What should monetary policy target?

- Aggregate inflation? Or dollar inflation only?
- Aggregate output gap? Or dollar sector output gap only?

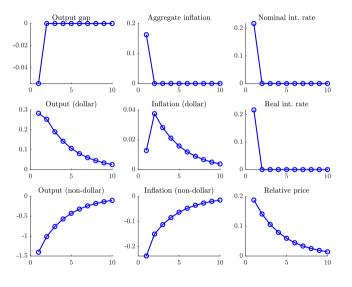
Thus:

- Two sector: dollar vs non-dollar; dollar depreciation shock
- ▶ Size of non-dollar sector v = 0.2
- ► Taylor rules

$$\hat{i}_t = \phi_\pi \, \pi_t + \phi_y \, \tilde{y}_t \tag{AIAO}$$

$$\hat{i}_t = \phi_\pi \, \pi_{1,t} + \phi_y \, \tilde{y}_t \tag{DIAO}$$

$$\hat{i}_t = \phi_\pi \, \pi_{1,t} + \phi_y \, \tilde{y}_{1,t} \tag{DIDO}$$



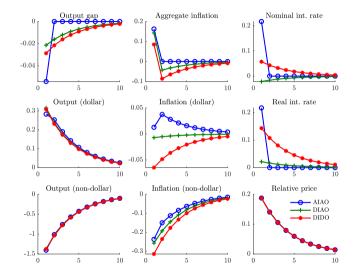
Parameterization

Table: Parameter values in benchmark model.

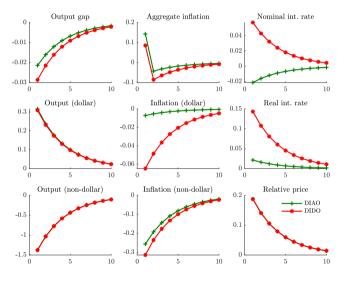
Parameter	Value	Description
α	0.250	Share of labour input in production function
σ	1.000	Coefficient of risk aversion
arphi	5.000	Inverse Frisch elasticity of labour supply
β	0.990	Discount factor
$ heta_{1}$	0.750	Probability of not adjusting prices in dollar sector
$ heta_2$	0.750	Probability of not adjusting prices in non-dollar sector
ϵ	9.000	Elasticity of substitution among consumption goods
ϕ_π	1.500	Interest-rate reaction to inflation
$\phi_{m{y}}$	0.125	Interest-rate reaction to output gap
\dot{v}	0.200	Size of non-dollar sector
$\sigma_{\Delta e}$	0.250	Standard deviation of exchange-rate shock

IRFs to dollar depreciation: Baseline Taylor Rule "AIAO"

Baseline policy:


$$\hat{i}_t = \phi_\pi \, \pi_t + \phi_y \, \tilde{y}_t$$
 (AIAO)

Result:


Considerable persistent reallocation between sectors. Large decline in non-dollar sector. Small and temporary aggregate recession.

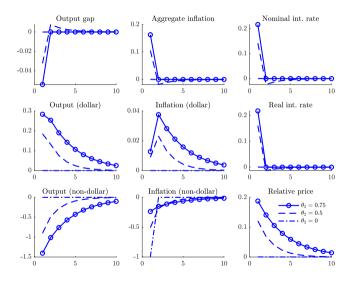
$$\begin{split} \hat{i}_t &= \upsilon \, \sigma \, \phi_\pi \, \Omega \, \Delta e_t. \\ \tilde{y}_t &= -\upsilon \, \phi_\pi \, \Omega \, \Delta e_t \\ \pi_t &= \upsilon \, (\sigma + \phi_V) \, \Omega \, \Delta e_t \end{split}$$

IRFs to dollar depreciation: Alternative monetary policies

IRFs to dollar depreciation: Alternative Taylor Rules "DIAO" and "DIDO"

Alternative policies:

$$\hat{i}_t = \phi_\pi \, \pi_{1,t} + \phi_y \, \tilde{y}_t \qquad \text{(DIAO)}$$


$$\hat{i}_t = \phi_\pi \, \pi_{1,t} + \phi_y \, \tilde{y}_{1,t} \qquad \text{(DIDO)}$$

Result:

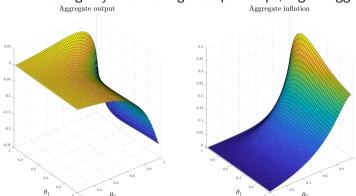
Persistent aggregate recession. For DIAO,

$$\begin{split} \tilde{y}_t &= -\lambda \, \upsilon \, \phi_\pi \, \Lambda \, s_t \\ \pi_{1,t} &= \frac{\upsilon \, (1-\theta)}{\theta} \, (1-\kappa \, \phi_\pi \, \Lambda) \, s_t \\ \hat{l}_t &= -\upsilon \, (\kappa - \lambda \, \sigma) \, (1-\theta) \, \phi_\pi \, \Lambda \, s_t \end{split}$$

Heterogeneous rigidity

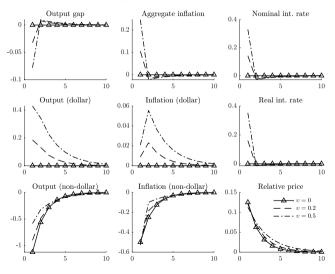
IRFs to dollar depreciation.

Prices more flexible in non-dollar sector: $\theta_1 = 0.75, \, \theta_2 \in \{0, 0.5, 0.75\}.$


Result:

- Flexibility of prices in non-dollar sector mitigates output drop in that sector and sectoral reallocation. None at flexible limit.
- Subtle: aggregate output persistence.

Volatility


Comparison across parameters. 8-period cummulated IRFs to dollar depreciation.

Result: more non-dollar rigidity induces larger output drops, higher aggregate inflation.

Different sector shares

IRFs to dollar depreciation. $\theta_1 = 0.75$; $\theta_2 = 0.5$.

Result:

Larger non-dollar sector share induces deeper overall recession, higher inflation, larger gain to dollar sector.

Conclusion

- Increasing varieties of privately issued digital currencies.
- ▶ **Question:** What happens, when firms price in these currencies, rather than the official currency?
- Approach: an NK model with multiple currencies.
- ▶ **Results:** Relative price between sectors becomes state variable. Rich sectoral dynamics. In response to a dollar depreciation:
 - Considerable persistent reallocation between sectors. Large decline in non-dollar sector. Small, temporary aggregate recession with AIAO, persist. w. DIAO, DIDO.
 - Increased flexibility of prices in non-dollar sector mitigates output drop in that sector and sectoral reallocation. None at flexible limit.
 - Larger non-dollar sector share induces deeper overall recession, higher inflation, larger gain to dollar sector.